JRC Research Report No. 90-18
June 1988 through May 1990

Network, System, and Status Software
Enhancements for the Autonomously Managed
Electrical Power System Breadboard

Protocol Specification
Grant NAG8-720

Volume 2 of 4 Volumes

Prepared by

James W. McKee
University of Alabama, Huntsville
Huntsville, Alabama 35899
(205) 895-6257

Prepared for

Norma Whitehead
EB12
NASA/MSFC
Huntsville, Alabama

Table of Contents

1. PULPOSE . + v ¢ o o o s s s o o o
2. Introduction . . .« .+ « ¢ + + e e e . . s
3. Power System Description

4, Protocol Requirements

5. Protocol Description« « . .

6. References « .

Appendix A Protocol Specification

7. Protocol Definitions+ « < « o < &

general 4 o e e e e e e e e e e
addresses e 4 e e e e e .
AYTAYS o o o o o o o s e e e e e e e e s
array pointers e e e e e e e e e e e e
blocks e e e e e e e e e e e e e e e e
constants . . . 4 4 e e e e e e e e e e
fields ¢ ¢ « ¢ « « « e e e e
flags . « ¢ v i e e e e e e e e
Numbers . . .« +« ¢« « « « o « «
Offsets . . . e e e e e s e e e e e e
stacks and queues e e e e e e e e e e e
stack pointers e e e e .

subroutine calls to the Kernel e e e e e .
8. Protocol design specification .
8.6. The description of the protocol
General information . o e
Initialization

Transmit State

Clean up State

Receive State

Timeout State ¢« « + « « o o+
Table 1 Packet Format « +« « « « « « + .
Table 2 Station names . . ¢ « « « « « « o o
Table 3 Transmit Control Block
Table 4 Receive Control Block e e e e e e e
Table 5 Time Out Control Block
Table 6 Initialization Command Block . . .
Table 7 Initialization Response Block .
Table 8 Status Control Block .
Figure 1 Data Flow Diagram -- Transmlt Protocol
Figure 2 Data Flow Diagram -- Receive Protocol
Figure 3 Data Flow Diagram -- Time out Protocol

9. Appendix B Structured Flow Diagrams of Protocol

2

10

11
11
11
12
12
12
12
13
13
14
14
15
15
16
17
18
19
19
19
21
21
22
24
26
27
27
28
28
29
30
30
31
32
33

34

9.

O W
w N

.1.

5.

Stack and Queue initialization definitions

9.1.1. Stack . . .+« v e s e e e e e e e

9.1.2. Queue e e e e e e e e e e
Definition of [] operator e e e e e e e e e e
Functions operating on stacks
9.3.1. General Push and Pop functions

9.3.1.1. PUSH procedure « . .
9.3.1.2. POP procedure . .

2. PUSH POP ITCBSk

3. PUSH POP IBSk

4. LOCK IBS and UNLOCK IBS e e e e e
.5. PUSH._. “ANASkK e e e e e e e e e
General operations on Queues .

1 Join QUEUE procedure (QUEUE IN) e e e s
2. Serve QUEUE procedure (QUEUE_ OUT) e e e
3. ENTER_QUEUE and DELETE QUEUE e e . . e .
9.4.3.1. ENTER _QUEUE
9.4.3.2. DELETE _QUEUE

9.4.4. Test CIRCULAR QUEUE Operatlon

9.4.4.1. EMPTY Function « . .
9.4.4.2. FULL Function « « « « .
9.4.5. JOIN and SERVE operation on QUEUE
9.4.5.1. QUEUE_IN OUT CBSk
9.4.5.2. QUEUE_IN_OUT RCBSk« « « « .
9.4.5.3 QUEUE IN OUT WFASk . . . o .

AMPS Communication Network Structured Flcw Dlagram

9.5.1. Top level flow diagram« . . .« =«

9.5.2. -- Level 1 INITIALIZATION « « « =
9.5.2.1. -- Level 1.1 Make STACKS ..
9.5.2.2. -- Level 1.2 Make QUEUES
9.5.2.3. —- Level 1.3 Make BUFFERS

9.5.2.3.1. -- Level 1.3.1 make RCBk
buffer+ ¢« « + + « e o e e
9.5.2.3.2. -- Level 1.3.2 make TCBk
buffer . e e e e e e e e e e e
9.5.2.3.3. -- Level 1.3.3 make IBSBk
buffer . e e e e e
9.,5.2.4. -- Level 1.4 Form ICBk
9.5.2.5. -- Level 1.5 Read and Store kernel
subroutine addresses . .
9.5.2.6. =-- Level 1.6 call Kernel Recelve
Ring Fill . . . e e e e e .
9.5.2.7. -- Level 1.7 KRNLINIT .
9.5.2.8. -- Level 1.8 Start transmltter
timeout+ . < . .

9.5.3. -- Level 2. RECEIVE STATE . « e e e
9.5.3.1. --— Level 2.1 RECEIVE ACK
9.5.3.2. -- Level 2.2 RECEIVE CCn . .

9.5.3.2.1, -- Level 2.2.1 CHECK COMMAND
9.5.3.2.1.1. -- Level 2.2.1.1
GENERATE ACK . . . e e e .

9.5.3.3. -- Level 2.3 RECEIVE NICn .

3

34
34
34
35
35
35
35

37
38
39
40
41
41
42
43
43
44
45
45
45
46
46
47
48
49
49
50
51
52
53

54
55

56
57

57

58
59

60
61
62
64

65
66

9.5.3.3.1. -- Level 2.3.1 CHECK ANASk

9.5.3.3.2. -- Level 2.3.2 CHECK NICn .

9.5.3.3.3. - - Level 2.3.3

CLEAR_PROTOCOL . e e .

9.5.4. -- Level 3. TRANSMIT STATE . . .

9.5.4.1. -- Level 3.1 MAKE PACKET
9.5.4.1.1. -- Level 3.1.1 SEARCH_ANAS

9.5.5. -- Level 4. CLEAN UP STATE . e e e .

9.5.6. -- Level 5. TIMEOUT STATE .

10. Appendix C Protocol source code in FORTH

67
68

69
70
71
72
73
74
74

75

1. Purpose

This wvolume contains the specification, structured flow
charts, and code listing for the protocol.

2. Introduction

The purpose of an autonomous power system on a spacecraft is
to relieve humans (on the ground or in the craft) from having to
continuously monitor and control the generation, storage and
distribution of power in the craft. This implies that
algorithms will have been developed to monitor and control the
power system. The power system will contain computers on which
the algorithms run. Studies, [1],[2], indicate that these
computers should be physically close to the hardware they monitor
and/or control. The studies also indicate that there should be
one central computer system that makes the high level decisions
and sends commands to and receives data from the other
distributed computers. This will require a communications
network and an efficient protocol by which the computers will
communicate.

One of the major requirements on the protocol is that it be
"real time" because of the need to control the power elements.
This implies a simple protocol, short messages, and as much of
the protocol implemented in dedicated hardware as possible.

The objective of this introduction 1is to present in a
logical fashion the considerations that led to the design and
development of a network protocol that is being implemented on
the Autonomously Managed Power System, AMPS breadboard at
NASA/MSFC. The AMPS breadboard is being used to develop and test
higher level control and expert system programs being developed
for power system management [3].

3. Power System Description

The power system for a spacecraft will consists of one or
more of each of three functional elements. The power generation
center, PGC, (e.g., solar arrays) generates the electrical power
for the spacecraft. The power storage center, PSC, (e.g., banks
of batteries) stores energy until needed. Load centers, LC,
switch the power from the distribution busses to the loads.

An autonomous power system can be thought of as system in
which the monitoring and control hardware are distributed to each
functional element and are connected by a network. The power
control center, PCC, is the central computer(s) on which the

high level programs run. Each PGC, PSC, and LC will contain the
hardware and software to monitor (and maybe control) the
voltages, currents, and temperatures in the center and monitor
and control the settings of the switches that connect the center
to the power bus.

The AMPS test facility currently features the following.

1. A programmable solar array simulator which supplies 220 +/- 20
VDC directly to three power channels with a maximum power output
of 75 kW.

2. An energy storage simulator which consists of a battery with
168 commercial nickel-cadmium (Ni-Cd) cells serially connected to
provide a nominal DC voltage of 220 volts and a capacity of 189
ampere-~-hours.

3. A load simulator which consists of nine resistive loads and
one dynamic load that dissipate a total of 24 kW of power when
operated at 200 VDC.

In addition, three Motorola 68000 microcomputer based
controllers provide data retrieval and low-level decision-making
for the power system with a NCR Tower based host computer
providing overall power system management and programmability for
flight power system simulation.

4. Protocol Requirements

This section will present the list of protocol requirements
that were derived from the physical layout of the power system
and the monitoring and control requirements of the overall power
management system. The objective in developing this protocol was
to make the protocol as simple as possible and still satisfy the
requirements of the power system.

The following 1is a 1list of the assumptions made that
simplified the protocol.

1. The bus topology will be used. Therefore, there is no need
for routing information, all stations are on the same line.

2. Once the network is initialized there will not be a need to
open and close sessions, i.e., all the stations stay on the line
all the time.

3. All the messages will be short, on the order of 4 to 200 bytes
(our analysis, [1], and [2] support this).

4. Because the physical length of the network will be short,
i.e., it will be totally confined to be within the space craft,

6

the protocol will not need to be as robust as some of the more
common protocols.

The following is a list of the requirements of the protocol.

1. Since the power system must be controllable in real time, the
protocol must be capable of processing (from the transmitting
application to the receiving application) messages in times on
the order of 10 ms to 100 ms. (In [2] a study was performed that
indicates for a power system to have a reaction time of_ 0.1
seconds a communication bit rate of on the order of 10° is
needed.)

2. The protocol must be able to initialize or re-initialize
itself.

3. The protocol must be able to add or remove stations at will.

4. Since the functional elements are physically dispersed, the
protocol must have the capacity to uniquely address an arbitrary
number of stations.

5. Since this is a control system the protocol must insure that
each message is delivered to the application in the order sent.

Given these requirements the question arises "Is it possible
to use a defined protocol such as TCP/IP [4] or DDCMP ([5]?2"
There are two disadvantages to using TCP/IP: 1) the amount of
computer time needed to process each message and 2) the number of
over head bytes in each message (minimum of 40). The major draw
back of TCP/IP is, of course, the amount of computer time
required. For this reason TCP/IP was rejected. Since the power
system environment is more constrained then the environment for
which DDCMP was designed, the protocol did not need all the
capabilities of the message exchange section of DDCMP.

The protocol developed is on the level of DDCMP. Although
not a requirement, the protocol assumes that it is working on top
of Ethernet hardware such as the ENP-30 card [6],[7]. This card
performs two of the three functions of DDCMP: framing and 1link
management (as does most network hardware). Some of but not all
of the message exchange features were incorporated. The ability
to use logical station addresses was added.

5. Protocol Description

This section will give an over view of the protocol. For a
detailed description of the protocol see the specification in
Appendix A. The following is a list of the main attributes of
the protocol.

1. The PCC initializes the network and establishes a session with
each other element on the power system network.

2. The network is self-initializing and can re-synchronize
itself.

3. Every packet is numbered.

4. Messages will be passed to the application program in the
correct order.

5. Every message is acknowledged.
6. There is a sliding acknowledgement window.

7. Messages are capable of being pipelined, i.e., messages can be
accepted before previous acknowledgements reach the sender.

8. There is a re-transmission of messages that have not been
acknowledged within the time out period.

9. There is a mapping between logical power system elements’
names and physical Ethernet addresses.

The computer system in each power system element is doing
two distinct operations: processing communication messages and
performing its specific monitor and/or control functions. The
present breadboard uses a simple scheme of two CPUs running in
parallel. One runs the protocol; the other runs the application
program. The two computers communicate through shared memory.
This is faster and simpler than one CPU with a complex operating
system that supports multi-processing.

The protocol is designed to be the interface between
application programs and the Ethernet hardware. The application
programs generate messages that are to be sent to other stations.
They pass these messages to the protocol. The Ethernet hardware
does the actual transmitting and receiving of messages over the
physical wire. To transmit a message the Ethernet hardware is
given the packet to be sent. The hardware sends the packet over
the cable and is responsible for assuring that the message is
transmitted correctly, i.e., it will retransmit the packet if it
detects a collision. When the Ethernet hardware receives a
packet, it checks the wunique station address and cyclic
redundancy code, CRC, and only accepts packets which are
addressed to the station and in which no errors have been
detected.

The philosophy of the implementation of the protocol is:
messages are never moved around; only pointers to the messages
are moved. This resulted in an implementation based on stacks

and queues and results in the ability of the protocol to quickly
process messages.

On a very high level the protocol can be viewed as follows.
For the receive function: the Ethernet hardware stores a
received message in the shared memory of both processors and
passes a pointer to the message to the protocol; the protocol
passes the pointer to the message to the application program.
For the transmit function: the application program creates a
message in shared memory and passes a pointer to the message to
the protocol which in turn passes the pointer to the Ethernet
hardware which transmits the message.

The protocol first initializes the network then moves round
robin between three states: transmit state, receive state, and
time out state. The protocol in the PCC initializes the network
by sending a packet, in broadcast mode, requesting all other
stations to identify themselves. Each station sends back its
logical name and Ethernet address. Then in each station the
protocol will enter the transmit state and check if there is a
message to send. If so the message will be sent. If not the
protocol will enter the receive state and check if there are
messages to be moved to the application program. If so, the
messages are moved. If not, the protocol will enter the time out
state. If a time out has occurred, unacknowledged messages are
sent again and the timer is reset. Then the protocol enters the
transmit state, etc.

When the application has a message ready to be transmitted,

it sets the Go-Flag. When the protocol enters the transmit
state, the protocol tests the Go-Flag and when set makes a packet
out of the message. The protocol resets the Go-Flag which

indicates to the application that the message has been sent. The
protocol combines the pointer to the message with a unique packet
number and other data needed by the Ethernet hardware to make a
packet. The protocol then passes a pointer to the packet to the
Ethernet hardware. The hardware transmits the packet (but does
not remove the packet from memory) and places the pointer to the
packet on the wait for acknowledgement stack, WFASk.

As packets are received by the Ethernet hardware they are
placed in shared memory and a pointer to the packet is placed on

the receive control block stack, RCBSk. The protocol monitors
the RCBSk and processes any packets found in the queue. The
packets can be either an acknowledgement or a message. If the
packet is an acknowledgement, the WFASk is checked for
corresponding message packet(s). (There is a sliding
acknowledgement window on packet numbers, so more than one packet
can be acknowledged with only one acknowledgement packet.) All
message packets in the WFASk queue that have been acknowledged
are deleted from the WFASk and memory. If the packet is a

message packet, the unique packet number is checked against the

9

expected number for the packet. If the numbers are the same the
packet 1is broken apart and the pointer to the message is placed
on the command buffer stack, CBSk. If the numbers are not the
same, the pointer is placed back at the end of the RCBSk queue.
(A packet has been received before its predecessor has been
correctly received.) Every message packet is acknowledged. The
protocol creates a acknowledgement packet which is transmitted by
the hardware. (Acknowledgement packets are automatically removed
from the WFASk.) The application program monitors the CBSk.
When it detects messages in the CBSk queue, it processes the
messages in the order in which the messages are on the CBSk.
(This insures that messages are processed in the order sent by
the other station.)

The time-out function re-transmits any packets that are on
the WFASk when a time out occurs. If the packet 1is not
acknowledged within the time out period, the packet’s pointer is
taken off the WFASk and passed to the hardware to re-transmit
the packet. The Ethernet hardware puts the pointer back on the
WFASk. When the packet is acknowledged, its pointer is deleted
from the WFASk and the message memory freed.

6. References

[1] TRW, "Space Power Distribution System Technology, Final
Report," Vol. 2, 1983, TRW Report No. 34579-6001-UT-00.

[2] Martin Marietta Aerospace, "Space Station Automation of
Common Mode Power Management and Distribution, Interim Final
Report," 1989, MCR-89-516.

[3] Weeks, D.J., "Expert Systems in Space," IEEE Potentials, Vol.
6, No. 2, 1987.

[4] Tanenbaum, A. S., Computer Networks, Prentice Hall, 1988.

(5] DEC, "Digital Data Communications Message Protocol, DDCMP,"
(Sspecification), March 1, 1978, AA-D59SA-TC.

[6] Communication Machinery Corporation, "Ethernet Node
Processor, ENP-30 Users Guide," 1985.

[7] Communication Machinery Corporation, "Ethernet Node
Processor, K-1 Kernel Software User’s Guide,"™ 1985.

10

Appendix A Protocol Specification
7. Protocol Definitions

Buffer is an array of storage in which node address, status,
command names, and data are stored.

Ccontrol block is an array of storage which contains control
information to/from the Kernel and an address of a buffer.

Command is a message to level 7 of the network. In this
system a command is generated and interpreted by the system
software.

Queue is a type of stack in which the bottom item is the
next item accessed, i.e., a circular stack in which items are put
in one end and taken out the other.

Function is the software that generates and interpret
commands.

Node is a sender/receiver on the network.

LIFO is a type of stack in which the top item is the next
item accessed, i.e., a push down stack.

Packet is a message to level 3 of the network. In this
system a packet is interpreted by the protocol software. Packets
usually contain commands. But there are packets that are used

only by the protocol software and never seen by the system
software, e.g., an acknowledgement packet. A packet consists of
a control block and a buffer.

Stack is an array of storage with associated pointer to
indicate the start of the stack, the end of the stack, and where
to access data in the stack.

Station consists of a node and the computer and other
hardware that interface and control the power hardware.

The following is a 1list of the abbreviations and their
definitions. ‘

general

NM, network manager

LCC, load center controller

PSC, power source controller

RPC, remote power controller

EPSC, electrical power system controller

11

DNAd,
RBAd,
SBAd,
SNAd,

BVAr,

addresses

destination node address
receive buffer address
send buffer address
sending node address

arrays -- these arrays store the present status
values for the system

battery voltage array

LCDTAr, LC diode temperature array
LCPAr, LC power array

PSPAr, PS power array

PSTAr, PS temperature array

SDAr,

switch data array

array pointers -- points to the start of the
corresponding array

BVAPt, battery voltage array pointer
LCDTAPt, LC diode temperature array pointer
LCPAPt, LC power array pointer

PSPAPt, PS power array pointer

PSTAPt, PS temperature array pointer

SDAPt, switch data array pointer

ICBk,
IRBK,

RCBK,

SCBK,

TCBk,

blocks =--
initialization command block
initialization response block

receive control block

A RCBK is used by the Kernel to pass the information about a
received packet. The RCBk contains the address of the
buffer in which the Kernel placed the data of the packet.
There will be RCBCn (receive control block constant) number
of RCBks that physically reside in the RAM on the ENP-30
card. Table 4 shows the definition of the fields in a
RCBk.

status control block

transmit control block
A TCBk contains the information needed for the Kernel to
form and transmit a packet. A TCBK contains the address of
the buffer containing the data to be transmitted. There
will be TCBCn (transmit control block constant) number of

12

TCBks that physically reside in the RAM on the ENP-30 card.
The location of the fields in the TCBK is shown in Table 3.

TOCBk, time out control block

A TOCBk contains the
portion of the Kernel.

information needed for the timer
The location of the fields in the

TOCBk are shown in Table 5.

ALCn
ANACn,
BCn,
BLCn,
CBSCn,
HLCn,
ITCBSCn,
RCBCn,
RCBSCn,
SNCn,

TCBCn,
TOCn,

WFASCn,

constants
address 1length constant -- number of bytes 1in an
address (2)
active node address constant -- size of ANASk (16)
buffer constant -- number of buffers (32)
buffer length constant -- number of bytes in a buffers
(256)

command buffer stack constant number of addresses
locations in the command buffer stack (4)

header length constant -- number of bytes in the header
(16)

idle transmit control block stack constant -- number of
address locations on the idle transmit control block
stack (20)

receive control block constant -- number of RCBks (16)
receive control block stack constant -- number of
address locations on the receive control block stack
(20)

station name -- the unique name of the station, i.e.,
LCCl1l, EPSC, etc.

transmit control block constant -- number of TCBKs (16)
timeout constant -- number of 2 ms. increments of time

between timeouts (2)

wait for acknowledgement stack constant number of
address locations in the wait for acknowledgement stack
(20)

fields

AKFd, acknowledgement field

ANAFd,
ANNFd,

active node address field
active node name field

ANRPNFd, active node receive packet field
ANTPNFd, active node transmit packet field
BAFd, buffer address field

CNFQ,

command name field

DAFd, destination address field

ICBESAF4,
ICBLAFFd,

ICBMFA4,

initialization command block Ethernet station address
field
initialization command block 1logical address filter
field

initialization command block mode field

13

ICBNRDFd, initialization command block number receive descriptor
field

ICBNTDFd, initialization command block number transmit descriptor
field

ICBRIHAFd, initialization command block receive interrupt handler
address field

ICBTIHAFd, initialization command block transmit interrupt
handler address field

IRBESAFd, Initialization response block Ethernet station address
field

IRBSRAFd, Initialization response block status routine address
field

IRBRRAFd, Initialization response block receive routine address
field

IRBTRAFd, Initialization response block transmit routine address
field

IRBTORAFd, Initialization response block timer routine address
field

DLFd, data length field

PNFd, packet number field

RAFd, receive address field

RBAFd, receive buffer address field

RBLFd, receive buffer length field

RBSFd, receive buffer status field

SFd, select field

SAFd, source address field

SCBFCFd, status control block function code field

SCBRFd, status control block return field

SCBSBAFd, status control block statistics block address field

SNFd, station name field

TBAFd, transmit buffer address field

TBLFd, transmit buffer length field

TSFd, time stamp field

TOFd, timeout field

TOECFd, timeout event count field

TOSAFd, timeout subroutine address field

flags

PRFg, protocol ready flag
RTFg, retransmit flag
SBFg, send buffer flag

Numbers -- constants

ANANo, active node address number
CNo, command number

RBNo, receive buffer numbers
RPNo, receive packet number

TBNo, transmit buffer number

14

TPNo,

ANOs,

transmit packet number

Offsets
active node offset (9 bytes)

ANAFOs, active node address field offset (0 bytes)
ANNFOs, active node name field offset (6 bytes)
ANTPNFOs, active node transmit packet number field offset (7

bytes)
ANRPNFOs, active node receive packet number field offset (8
bytes)
DAFOs, destination address field offset (0 bytes)
SAFOs, source address field offset (6 bytes)
AKFOs, acknowledgement field offset (12 bytes)
SNFOs, station name field offset (13 bytes)
PNFOs, packet number field offset (14 bytes)
DLFOs, data length field offset (16 bytes)
CNFOs, command name field offset (18 bytes)
SFOs, select field offset (20 bytes)
DOs, data offset (22 bytes)

RBAFOs, receive buffer address field offset (8 bytes)
RBLFOs, receive buffer length field offset (6 bytes)

RBSFOs, receive buffer status field offset (4 bytes)
RMLFOs, receive message length field offset (12 bytes)
RTFOs, retransmit flag offset (6 bytes)

TBAFOs, transmit buffer address field offset (8 bytes)
TBLFOs, transmit buffer length field offset (6 bytes)
TOSAFOs, time out subroutine address field offset (8 bytes)
TOECFOs, time out event code field offset (12 bytes)

stacks and queues

ANASK, active nodes address stack -- LIFO (ANACn * ANOs bytes)

The ANASk will contain information on the nodes that are
communicating with this node. The ANASk will contain four
fields for each active node: active node address field,
ANAFd, active node name field, ANNFd, active node transmit
packet number field, ANTPNFd, and active node receive packet
number field, ANRPNFd. This list will be ANACn nodes deep.
The ANAFd contains the 6 byte address of a node to which
this node is communicating. The ANNFd contains the unique
name (number) of the active node, see table 2. The ANTPNFd
will contain the transmit packet number, TPNo, for the
number of the next packet to be transmitted. The ANRPNFd
will contain the receive packet number, RPNo, for the number
of the next packet to be received from the address. [The
TPNo will be inserted into the buffer before the packet is
transmitted. The RPNo will be compared to each packet from
the address. If the packet number is not the same as the
RPNo, the command will be ignored. The packet will be
acknowledged.]

15

ANAFd ANNFd ANTPNFA ANRPNFd
(6 bytes) (1 byte) (1 byte) (1 byte)

active node |6 byte address |unique name |variable |variable

active node |6 byte address |[unique name |variable [variable

(o]
(o]
o

active node |6 byte address |unique name |variable |variable

CBSk, command buffer stack -- queue (ALCn * CBSCn bytes)
The CBSk contains the addresses of the buffers which contain
the commands that are waiting to be processed. The commands
are processed in a first in - first out fashion. The CBSOt
points to the next buffer to be processed. The CBSIn points
to the where the next buffer address will be stored.

ITCBSkK, idle transmit control block stack -- LIFO (ALCn *
ITCBSCn bytes)
The ITCBSk contains the addresses of TCBKs that are not in
use. When a TCBk is needed it is popped off this stack.

IBSk, idle buffer stack -- LIFO (ALCn * BCn bytes)
The IBSk contains the addresses of the buffers not in use.
There will be BCn (buffer constant) of buffers. Each

buffer will be BLCn (buffer length constant) bytes long.
The buffers will reside in the ENP-30's RAM.

RCBSk, receive control block stack -- queue (RCBSCn * ALCn
bytes)
The RCBSkK contains the addresses of the RCBks of received
packets.

WFASK, waiting for acknowledgement stack =-- queue (WFASCn *
ALCn bytes)
The WFASk contains the address of TCBks of packets that have
not been acknowledged. When a packet is acknowledged the
corresponding TCBkKk is replaced with the last TCBk (pointed
to by WFASOt) on the stack. The WFASOt is incremented.

stack pointers

head --- points to the start of a stack, the smallest absolute
address, never changes
tail --- points to the end or top of a stack, the largest

absolute address, never changes

16

in --- points to the location in which to store the next entry
in a queue, increases up to tail then reset to head

out --- points to the location from which to get the next piece
of data in a queue, increases up to tail then reset to
head

push/pop- points to the location for the top of the LIFO stack,
pop from it, push at 1 + top

modules increment -- increment pointer, if greater than tail

set equal to head

ANASHd, active nodes address stack head

ANASPp, active nodes address stack push/pop
ANAST1, active nodes address stack tail

CBSHA, command buffer stack head

CBSIn, command buffer stack in

CBSOt, command buffer stack out

CBST1, command buffer stack tail

ITCBSHd, idle transmit control block stack head
ITCBSPp, idle transmit control block stack push/pop
ITCBST1, idle transmit control block stack tail
IBSHd, idle buffer stack head

IBSPp, idle buffer stack push/pop

IBST1, idle buffer stack tail

RCBSHd, receive control block stack head
RCBSIn, receive control block stack in

RCBSOt, receive control block stack out

RCBST1, receive control block stack tail
WFASHd, waiting for acknowledgement stack head
WFASIn, waiting for acknowledgement stack in
WFASOt, waiting for acknowledgement stack out
WFAST1, waiting for acknowledgement stack tail

subroutine calls to the Kernel

KINIT, call to the Kernel initialize routine. pass address of

ICBk

KOUT, call to the Kernel timeout routine. pass address of TOCBk

KRCV, call to the Kernel receive routine. pass address of RCBk

KSTS, call to the Kernel control/status routine. pass address of
SCBk

KXMT, call to the Kernel transmit routine. pass address of TCBk

17

8. Protocol design specification

8.1. Level 1 and part of level 2 of the protocol will be
implemented by the ENP-30 board or equivalent.

8.2. Node to node protocol -- Each packet will contain the 48 bit
destination node address, DNAd, contained in the destination
address field, DAFd, for the packet and the 48 bit source node
address, SNAd, contained in SAFd of the packet, as shown in table
1. A node will only process packets addressed to it.

8.3. Each packet will have a packet number field, PNFd. There
will also be an acknowledgement field, AKkFd. The node that
originated the command will place in the PNFd the packet's number
and set the AkFd to indicate that the packet is a command. The
receiving node will return to the sender a packet that contains
in the PNFd the number of the packet sent and the AKFd set to
indicate an acknowledgement. If a packet is not acknowledged
within the time-out interval, the packet will be sent again.

8.4. The protocol will use the following instructions to
establish a network.

Reset Network -- the receipt of this command will cause the
node to reset itself, in particular the node will do the
following: :

A. Clear its ANASk (move the head pointer to the start of the
stack) ;

B. The return of an acknowledgement packet is optional;

cC. Clear the WFASk;

D. Clear the RCBSKk:
E. Clear the CBSk.

Network initialize [w/o-ack] (with out acknowledgement)--
will initialize the network. It will be sent by the network
manager. Each receiving node will do the following:

A. Return a network initialize [ack] packet;
B. The return of an acknowledgement packet is optional;
D. Place the data from the sending node on the ANASKk;
Network initialize [w-ack] (with acknowledgement) -- will

place the data from the sending node into the ANASk of the
receiving node. An acknowledgement packet is required.

8.5. Network manager =-- The EPSC will be designated as the
network manager. Whenever the network is initialize, the network
manager, NM, will send out 1in, broadcast mode, a network
initialize [w/o-ack] packet. This packet requests that each node
on the network send the NM the receiving node's name and address.
Each node must have embedded in its software a unique name, e.g.,
LCC1, LcC2, PSCl, PSC2, expert system, etc. This is necessary to
enable the EPSC to control the individual stations of the system
if there are more than one of each type of station on the

18

network. When a node receives a network initialize [w/o-ack]
packet, the node will send the node's address and name in a
initialize network [w-ack] packet until the packet Iis
acknowledged. After the network is initialized, each time a node
receives a packet, it will compare the contents of the SAFd to
the contents of each ANAFd in the ANASKk. If there is not a
match, the packet is ignored.

8.6. The description of the protocol will be divided into five
sections: general information, initialization, transmit state,
receive state, and timeout state. The protocol is based on the
philosophy of a stack of buffers in which data is stored, and the
moving of the addresses of these buffer. Once data is received
or generated in the node, the data is not copied to any other
buffer; the pointer to the buffer is moved. There is a set of
stacks between which the addresses of the buffers are moved.
There are also flags which are used to indicate the status of
portions of the protocol.

General information

After initialization the protocol is in a loop between three
states: transmit state, receive state, and timeout state. The
protocol loops through the testing of the SBFg, testing of the
RTFg, and entering the receive state.

The SBFg is set to one by functions in the operating system
when a buffer is ready to be sent to another station. The buffer
will contain all the information necessary to form a packet. If
the SBFg is set, then the protocol will enter the transmit state
and form and transmit a packet of data to the desired node.

The protocol always enters the receive state. It then
cleans up the WFASkKk and processes any packets on the RCBSK.
When a node receives a packet, the Kernel places the RCBk on the
RCBSk. The packet could be either an acknowledgement, a command,
or one of the network initialize packets.

The Kernel has an internal clock that will, by setting the
RTFg to one, inform the protocol when it is necessary to resend
packets that have not been acknowledged. If the RTFg is set,
the protocol will retransmit any packets that have not been
acknowledged.

Initialization

On power up or reset, the Kernel initializes itself and the
Lance. Then the Kernel waits for the operating system to down
load the protocol software and set the go bit in the Kernel's
mailbox. Once the go bit has been set, the Kernel passes control
of the ENP-30 microprocessor to the protocol software. The

19

following is a list of the operations necessary to initialize the
protocol:

A‘

Only

J.

The protocol calls the Kernel's initialization command.
This command returns the addresses of the Kernel's status
subroutine, receive subroutine, transmit subroutine, timer
subroutine, and Ethernet node address.

All the stack pointers are set to the start of their
respective stacks.

The addresses of all the buffers are placed on the IBSK.

For each RCBK a buffer address is popped off IBSk and
placed in the RBAFd. Each RCBk is passed to the Kernel
through a receive subroutine call.

The ANASk is cleared.
The RTFg and SBFg are set to zero.
All the TCBks are cleared and placed in the ITCBSK.

The Kernel's status subroutine is called, which starts the
Lance. This enables the node to start to receive and
transmit packets.

The PRFg is set to one. This enables the operating system
to continue.

in the EPSC will the following be implemented.

The EPSC initializes the network by making and sending a

network initialize [w/o-ack] packet as follows:

a. A TCBk is popped off the ITCBSk:

b. A buffer is popped off the IBSk and the address placed
in the TBAFd of the TCBK.

c. The contents of HLCn is placed in the TBLFA.

d. The following data is placed in the fields of the

buffer:

1. The broadcast Ethernet address (all 1's) is placed
in DAFA4;

2. The node's Ethernet address will be placed in the
SAFd4d;

3. AkFd will be set to indicate a network initialize
[w/o—-ack] packet;
4. The station name (number) (see table 2) will be
placed in the SNFQ4:;
5. The PNFd is set to zero.
e. Then the address of the TCBk is passed to the Kernel
through a transmit subroutine call.

20

Transmit State

If the SBFg is a one when checked, the protocol will enter
the transmit state. The data flow diagram for the transmit state
is shown in figure 1. The protocol uses a TCBK to make a
packet. The last two TCBks on the ITCBSk are reserved for use by
the receive state protocol.

A. Therefore, if ITCBSPp -~ ITCBSHd is less than three, a packet
can not be made, and the protocol exits the transmit state.

B. If more than two TCBks are on the ITCBSk, then the protocol
makes a packet as follows:

a. A TCBK is popped off the ITCBSK:

b. The buffer address in SBAd is transferred to the TBAFd
of the TCBk. (See table 3 for a description of the
fields in the TCBK.)

c. The length of the data in the buffer (DLFd + HLCn) is
placed in the TBLFAd.

d. The following data is placed in the respective fields
of the buffer if the contents of the LDFd match the
contents of an ANNFd:

1. DAFd will be set to the contents of the ANAFd;

2. The node's Ethernet address will be placed in the
SAF4d;

3. AKFd will be set to indicate a command;

4. The station name (number) (see table 2) will be
placed in the SNFd:;

5. The TPNo from the ANTPNFd of the ANASk for the

receiving node (content of the DAFd equal content
of ANAFd) will be placed in the PNFd.
6. And TPNo will be modules incremented.
e. Then the address of the TCBk is passed to the Kernel
through a transmit subroutine call.
f. The SBFg is set to zero.

c. The protocol exits the transmit state.

After the packet has been transmitted, the Kernel places the
address of the TCBk on the WFASK.

Clean up State

The protocol will in a round-robin fashion enter the clean
upstate. In the clean up state the protocol will clean up the
WFASK.

The protocol removes all the acknowledgement packets or network

initialize [w/o-ack] packets from the WFASK. Starting at the
TCBk pointed to by WFASOt, the AKFd of the buffer of each TCBK is

21

examined. If it is an acknowledgement or a network initialize
[(w/o-ack] packet, the packet is broken apart:
a. The TCBk is pushed onto the ITCBSKk;
b. The contents of the TBAFd is pushed onto the IBSk;
c. The location of the TCBK in the WFASk is filled with .
the TCBk pointed to by WFASOt.
d. And WFASOt is modules incremented.

The protocol then exits the clean up state.

Receive State

The protocol will in a round-robin fashion enter the
receive state. In the receive state the protocol will process
any commands on the RCBSk and update, if necessary, the ANASKk.
The data flow diagram for the receive state is shown in figure
2.

The Kernel maintains a stack of addresses of idle RCBKs.
When the Lance receives a packet the Kernel will supply a RCBK to
Lance. Lance places the data in the buffer of the RCBK. The
Kernel will then, through an interrupt, place the address of the
RCBk on RCBSK.

A. The protocol starts processing the RCBks on the RCBSk. The
protocol starts at the RCBk pointed to by RCBSOt and
processes each RCBk up to RCBSIn. First each packet is
broken apart.

a. If bit 15 of the RBSFd is a zero, then there has not
been an error in the reception of the packet in the
Lance and the packet can be used. The following is
performed.

1. The buffer address in RBAFd is placed in RBAd.
2. A buffer address is popped off of IBSk and placed
in RBAFAd.

b. The RCBK 1is passed to the Kernel in a receive
subroutine call.

Now the AkKFd of the buffer in RBAd is examined. The buffer
can contain either an acknowledgement, a network initialization,
or a command.

B. If the buffer of RBAd is an acknowledgement, the protocol
searches the WFASk 1looking for a corresponding command.

(The search is between the TCBk pointed to by WFASOt up to

the TCBK pointed to by WFASIn.)

a. For each command on the WFASk, (the TCBks can be for
either command or acknowledgement packets) the
protocol finds the transmitting node on the ANASK as
follows:

22

(

b.

If the content of the SAFd of the packet equals
the content of the DAFd of the buffer in RBAd4,
then the protocol checks the RPNo as follows:

If the content of the PNFd of the packet is
at least as large but not greater than four
more than the content of the PNFd of the
buffer, the TCBk has been acknowledged. (A
sliding acknowledgement window of four.)

a) the TCBk is pushed onto the ITCBSKk;

b) The buffer address in TBAFd is pushed
onto the IBSK:;

c) The location of the TCBk in the WFASKk is
filled with the TCBk pointed to by
WFASOt;

d) And WFASOt is modules incremented.

The address in RBAd is pushed onto the IBSk.

If the buffer is a network initialize command, the protocol
checks if the transmitting node is on the ANASk as follows:
If the content of the SAFd of the buffer is not equal
to the content of any of the ANAFds, then the protocol
adds the new node to the ANASk as follows:

The content of the SAFd is moved to ANAFd4;

The content of the SNFd is moved to the ANNFd;

The content of the PNFd is moved to the ANRPNFA4d;
The ANTPNFd is set to zero.

If the buffer is a network initialize ([w/o-ack], then
the protocol creates an network initialize [w-ack] as

a.

c.

1.
2.
3.
4.

follows:

1‘

2.

3.

4.
A)
B)
C)
D)

5.

Pop a TCBk off the ITCBSK.

Pop a buffer address off the IBSk and place the
address in the TBAFd of the TCBK.

Set the TBLFd to HLCn;

Set the fields of the buffer as follows;

Move the content of the SAFd of the RBAd
buffer to the DAFd of the buffer of the TCBK.
Set the AkFd of the TCBk to network
initialize (w-ack].

Place the Ethernet address of the node in
the SAFAd.

Place the station name (number) (see table
2) in the SNFd.

Then the address of the TCBk is passed to the
Kernel through a transmit subroutine call.
The address in RBAd is pushed onto the IBSK.

If the buffer is a command, the CBSk is checked to see if it
If CBSk is full the command is ignored. The
buffer address in RBAd is pushed onto IBSK.

is full.

An

acknowledgement packet 1is created and sent to the

transmitting node as follows:

23

a. Pop a TCBk off the ITCBSK.
b. Pop -a buffer address off the IBSk and place the
address in the TBAFd of the TCBK.
c. Set the TBLFd to HILCn.
d. Set the fields of the TCBk buffer as follows:
1) Move the content of the SAFd of the RBAd buffer to
the DAFd of the buffer of the TCBK.
2) Move the content of the PNFd of the RBAd buffer to
the PNFd of the buffer of the TCBK.
3) Set the AKFd of the TCBk to acknowledge.
4) Place the Ethernet address of the node in the
SAFd.
5) Place the station name (number) (see table 2) in
the SNFd.
e. Then the address of the TCBk is passed to the Kernel
through a transmit subroutine call.

F. If the buffer is a command and the CBSk is not full, the
command is checked to determine if it should be placed on
the CBSk as follows:

a. If the content of the SAFd of the RBAd buffer is equal
to the content of a ANAFd, then the RPNo is checked as
follow:

1. If the content of the PNFd of the RBAd buffer is
equal to the content of the ANRPNFd, then the
buffer contains the expected command.

A) The buffer address in RBAd is pushed onto
CBSk at CBSIn;

B) CBSIn is modules incremented:;

C) And the RPNo of the ANRPNFd 1is modules
incremented.

D) An acknowledgement packet is generated (see
Acknowledgement above).

2. If the content of the PNFA of the RBAd buffer is
less but within four (a sliding window of four) of
the content of the ANRPNFd, this is an old packet
that has already been processed and must be
acknowledged.

A) An acknowledgement packet is generated (see
Acknowledgement above).

3. Otherwise the address in RBAd is pushed onto the
IBSk.

b. Otherwise the address in RBAd is pushed onto the IBSk.

G. After the protocol goes through this processing, it exits
the receive state.

Timeout State

The Kernel has a user setable timer that counts down to
zero. . The user sets the initial count in the timer. When the

24

count reaches zero, the Kernel will set a flag and call a
subroutine in the user's code. The timer has a resolution of 2
milliseconds. Figure 3 shows the data flow diagram for the time
out portion of the protocol.

When the RTFg is checked and is one, the protocol will call
the function that will reset the RTFg, start the time out clock
again, and retransmit all the packets, if any, in the WFASk.

A. The RTFg is set to zero.

B. There will be only one TOCBK. Table 5 shows the fields in
the TOCBKk. The timer subroutine in the Kernel is called
and passed the address of the TOCBk; nothing is changed in
the TOCBk except that the RTFg is reset to zero. This
starts the Kernel counting on the next time out interval.
The TOFd of the TOCBk contains the number of 2 ms.
increments of time to be counted down. When the count
reaches zero, bit 15 of the RTFg in the TOCBK is set to 1.

C. If there are any TCBks on the WFASk, they are retransmitted.
The position of the WFASIn is noted, and all TCBks between
WFASOt and the o0ld WFASIn are sent to the Kernel one at a
time through transmit subroutine calls. (The old WFASIn
must be noted because after each TCBk is sent to the Kernel,
the Kernel will place the TCBk back on the WFASK.) (The
call to a subroutine in the user's program by the Kernel is
not used; only a subroutine return is coded.)

D. The protocol then exits the timeout state.

25

Table 1 Packet Format

Hex Field Number
Address Name of Bytes
0 Destination address DAFA |6 bytes
6 Source address field SAFd |6 bytes

C Acknowledgement field AkFd |1 bytes

D Packet number field PNFd |1 bytes

E Station name field SNFd |1 bytes

F Logical Destination LDFd |1 bytes

10 Forward Address field FAFd |1 bytes

11 Return Address field RAFd |1 bytes

12 Time stamp field ‘ TSFd |4 bytes
16 Data length field DLFd |1 bytes
17 Command name field CNFd |1 bytes
18 Select field SFd |2 bytes
1A Data variable

AKFd, Acknowledgement field contains a number indicating the
type of packet as follows:

type AkFd
acknowledgement AkCn 0]
command CcCn 1
network initialize [w/o-ack] NICn 2
network initialize [w-ack] NIACn 3
network clear NIC1l 4

PNFd, The packet number field is the number of the packet.
SNFd, The station name field contains the name of the station

sending the packet. Each stations has a wunique number
corresponding to the name of the station defined as follows:

26

Table 2 Station names

station number
station type 1 2 3 4 5 6 7 8
EPSC 0
PS 8 S 10 11 12 13 14 15
LCC 16 17 18 19 20 21 22 23
Expert Sys. 24

TSFd, The time stamp field contains the relative system time when
the command is performed. The time is the number of ticks on
the system clock. The system clock has a resolution of 2 ms.
CNFd, The command name field contains the name of the command.

DLFd, The data length field contains the number of bytes of data
in the command and must be less than 240 (BLCn - HLCn) bytes.

Table 3 Transmit Control Block

byte name of block present

address contents

0 Link address (address of the next supplied by user
2 -;I;ck for a multi-block packet)

4 Status supplied by ENP

6 Transmit buffer length field TBLFd |supplied by user
8 Transmit buffer address field supplied by user
A TBAFd

Cc TDR value (data used if error) supplied by ENP

E Reserved used by ENP

27

Table 4 Receive Control Block

byte name of block

address contents

0 Link address (address of the next supplied by ENP

2 block for a multi-block packet)

4 Status RBSFd supplied by ENP

6 Buffer length RBLFd |supplied by user

8 Receive buffer address field supplied by user

A [RBAFd

C Receive message length field RBLFd |supplied by ENP

E Reserved used by ENP
Table 5 Time Out Control Block

byte name of block

address contents

0 Link address (address of the next supplied by ENP

2 block for a multi-block chain)

4 Retransmit flag, RTFg set by ENP

6 Time Out Field TOFd TOCn

8 Time Out Subroutine Address Field supplied by user

A TOSAFd

c Time Out Event Code Field TOECFd |supplied by user

E Reserved used by user

28

Table 6 Initialization Command Block

byte name of block

address contents

0 Mode ICBMFd supplied by user
2 # Receive Descriptors ICBNRDFd supplied by user
4 # Transmit Descriptors ICBNTDFAd supplied by user
6 Reserved

8 Logical Address Filter ICBLAFFd supplied by user
. G

. I

E Receive Interrupt Handler supplied by user
10 Address ICBRIHAFd

12 Transmit Interrupt Handler supplied by user
14 Address ICBTIHAFd

16 Bus Interrupt Handler supplied by user
18 Address ICBBIHAFA

1A Ethernet Station Address ICBESAFd supplied by user
icC [

1E [

29

Table 7 Initialization Response Block

byte name of block
address contents

0 Ethernet Station Address IRBESAFd supplied by ENP

—_—

2

4
6 Reserved
8 Status Routine Address IRBSRAFdA supplied by ENP

C Receive Routine Address IRBRRAFd supplied by ENP

10 Transmit Routine Address IRBTRAFd supplied by ENP

14 Timer Routine Address IRBTORAFd |supplied by ENP

18 Address ICBBIHAFd |supplied by ENP

Table 8 Status Control Block

byte name of block

address contents

0 Function Code | SCBFCFd |supplied by user
2 CSRO Return SCBRFd supplied by ENP

4 Statistics Block Address SCBSBAFd |supplied by ENP

30

SBAd

buffer address
SBFg [Pgpl |
logical bufter trans
address pacjet
[cRar] JAuress
make
transmit
packet
transmig control
block address
ITCBSk LIFO

transmit control block addresses
]

Kernel/Aransmit

ransmit
packet
addre

put on
wait-for-acknowlegement
stack subroutine

transmit packet addresses
|

Figure 1 Data Flow Diagram-- Transmit Protocol

31

put on
receive packet
stack subroutine

receive pasket address

WFASK FIFO recdive reesk PV FiFo

transmit packet addresses intgfrupt receive packet addresses
ANASk

[Pp] active node array

receive wacket
addre

Kernel/receive receive
packet
addr addres process
received
buffer packets
garess

IBSk LIFQ B¢
buffer addresses acknowl

[pyfh] [POp

eggement

command

bytfer
address

process
command
buffer

check for
acknowledged
packets

Kernel/transmit

transm\it control
command

block §ddress
buffer
t control addjoess
bleCk address
[push] [push]
ITCBSk CBSk LIFO
tramsmit control block addresses command buffer addresses
1 e]
Figure 2 Data Flow Diagram -- Receive Protocol

32

TOCBK

Kernelftime out

RTFg

retransmit
packets

Kernel/ transmit

ransmit packet addresses
O

Figure 3 Data Flow Diagram -- Time out Protocol

33

9. Appendix B Structured Flow Diagrams of Protocol
Revision D
9.1. Stack and Queue initialization definitions

9.1.1. Stack

]
]
(3 3 [-
Initialize
Stack + Pointer
Starting -+ + Head
Address
«~ Head + ASCn
]
]
n
|
]
-
]
Ending - +« Tail
Address
9.1.2. Queue
Initialize
Queue
In Pointer
Out_Pointer
Head Head+ASCn TTil
{ { {
| N 1 E N EEEENEEEN EEEN
t 1
Starting Ending
Address Address

34

9.2. Definition of [] operator

on the right hand side of the "<-" read "[x]" as: the contents
of the location pointed to by x.

On the left hand side of the "<-" read "[y]" as: store in the
location pointed to by y.

9.3. Functions operating on stacks

STACK POINTER HEAD TAIL
ITCBSk ITCBSPp ITCBSHd ITCBST1
IBSk IBSPp IBSHd IBST1
ANASk ANASPpP ANASHA ANAST1

9.3.1. General Push and Pop functions

9.3.1.1. PUSH procedure

PUSH (item, pointer, tail, numb)

YES
(pointer = tail) ?

1

NO print ('STACK "numb" is full')
STOP system

pointer +~ pointer + ASCn
[pointer] +« 1item

EXIT

35

9.3.1.2. POP procedure

POP (item, pointer, head, numb)

(pointer < head) ?

YES

i

NO

print ('STACK "numb" is empty')
STOP system

{

item « [pointer]

return item (address)

pointer <+ pointer - ASCn

EXIT

36

9.3.2. PUSH_POP_ITCBSk

PUSH
PUSH_ITCBSk (item)
‘
PUSH (item, ITCBSPp, ITCBST1, 1)
4
EXIT
procedure call
POP

POP_ITCBSk

i

POP (item, ITCBSPp, ITCBSHd, 1)

i

EXIT
function call

37

9.3.3. PUSH_POP_IBSk

PUSH
PUSH_IBSk (item)
l
LOCK_IBS ()
l
PUSH (item, IBSPp, IBST1, 2)
I
UNLOCK_IBS ()
l
EXIT
procedure call
POP

POP_IBSk

l
LOCK_IBS ()

POP (item, IBSPp, IBSHA4, 2)

[
UNLOCK_IBS ()
[

EXIT
function call

38

9.3.4. LOCK_IBS and UNLOCK_IBS

LOCK_IBS ()

i -

is IBSk resereved

yes

{ino

reserve IBSk

i -

4

yes

is IBSk locked

i |no

1. lock IBSk

2. un-reserve IBSk

l
EXIT

UNLOCK_IBS ()

I

un-lock IBSk

l
EXIT

39

9.3.5. PUSH_ANASK

ANASK_TEST

i

ANASPp + ANASPp + ANLCn

i

YES
ANASPp > ANAST1 ?

NO i

print ('STACK ANASkK IS FULL')
STOP system

EXIT

PUSH_ANASk (addr, pointer)

i

[pointer+ ANAFOs] +« [addr + SAFOs]
[pointer+ ANNFOs] « [addr + SNFOs]
[pointer+ ANRPNFOs] « [addr + PNFOs]
[pointer+ ANTPNFOs] « O

i

EXIT

40

9.4. General operations on Queues

QUEUE IN-POINTER OUT-POINTER HEAD TATL

CBSk CBSIn CBSOt CBSHd CBST1
RCBSk RCBSIn RCBSOt RCBSHA RCBST1
WFASk WFASIn WFASOt WFASHA WFAST1

9.4.1. Join QUEUE procedure (QUEUE_IN)

QUEUE_IN (item, Head, Tail, In, Out, numb)

{

YES

QUEUE_FULL (In, Out) ?

4

NO print (' attempt to add to
full queue "numb" ')
STOP system

!

ENTER_QUEUE (item, Head, Tail, In)

EXIT

41

9.4.2. Serve QUEUE procedure

(QUEUE_OUT)

QUEUE_OUT (item, Head, Tail, In, Out, numb)

i

QUEUE_EMPTY (In, Out) ?

YES

NO

i

{

Print ('attempt to read from
an empty queue "numb" ')
STOP system

DELETE_QUEUE (item, Head, Tail, Out)

EXIT

42

9.4.3. ENTER_QUEUE and DELETE_QUEUE

9.4.3.1. ENTER_QUEUE

ENTER_QUEUE (item, Head, Tail, In)

!

In « In + ASCn
(In] « item

43

‘ YES
(In = Tail) ?
il
NO
In Head - ASCn
{
il
EXIT

9.4.3.2. DELETE_QUEUE

DELETE_QUEUE (item, Head, Tail, Out)

Out +« Out + ASCn
item +« [Out]

YES

(out = Tail) ?

4

NO
out +« Head - ASCn

2

i

return (item): an address

EXIT

44

9.4.4. Test CIRCULAR QUEUE Operation

9.4.4.1. EMPTY Function

QUEUE_EMPTY (In, Out): Boolean

NO

i

Return (FALSE)

Return (TRUE)

EXIT

9.4.4.2. FULL Function

QUEUE_FULL (In, Out): Boolean

l

NO

(In + ASCn) = Out ?

!

YES
Return (FALSE)

i

Return (TRUE)

l

EXIT

45

9.4.5. JOIN and SERVE operation on QUEUE

9.4.5.1. QUEUE_IN_OUT_CBSk

Join QUEUE

QUEUE_IN CBSk (item)

+

QUEUE_IN (item, CBSHd, CBST1, CBSIn, CBSOt, 1)

EXIT

Serve QUEUE

QUEUE_OUT_CBSk

i

QUEUE_OUT (item, CBSHd, CBST1,CBSIn, CBSOt, 1)

EXIT

46

9.4.5.2. QUEUE_IN_OUT_RCBSk

Join QUEUE

QUEUE_IN_RCBSk (item)

i

QUEUE_IN (item, RCBSHd, RCBST1l, RCBSIn, RCBSOt, 2)

EXIT

Serve QUEUE

QUEUE_OUT_RCBSk

i

QUEUE_OUT (item, RCBSHd, RCBST1l, RCBSIn, RCBSOt, 2)

EXIT

47

9.4.5.3. QUEUE_IN OUT_WFASK

Join QUEUE

QUEUE_IN_WFASk (item)

i

QUEUE_IN (item, WFAHd, WFAST1, WFASIn, WFASOt, 3)

EXIT

Serve QUEUE

QUEUE_OUT_WFASk

!

QUEUE_OUT (item, WFASHd, WFAST1l, WFASIn, WFASOt, 3)

EXIT

48

9.5. AMPS Communication Network Structured Flow Diagram

9.5.1. Top level flow diagram

START

i

1. INITIALIZATION

—

i

2. RECEIVE STATE

3. TRANSMIT STATE

i

4. CLEAN UP STATE

i

5. TIMEOUT STATE

+

6. INCREMENT NETWORK
ALIVE COUNTER

49

9.5.2. -- Level 1 INITIALIZATION

KRNLINIT « IAFDDO

i

1.1 Make STACKS

i

1.2 Make QUEUES

2

1.3 Make BUFFERS

i

1.4 Form ICBk

i

1.5 Read and Store kernel subroutine addresses

{

FCFO +« LANCEGO
KSTS (SCBuf)

i

1.6 call Kernel Receive Ring Fill

i

YES

SNCn

EPSC ?

1

NO
1.7 NETINIT

]

i

1.8 Start transmitter timeout

i

Go To 2. RECEIVE STATE

50

9.5.2.1.

-=- Level 1.1 Make STACKS

make ITCBSk STACK

BufvVr « BASEADD

ITCBSHd « BufVr

ITCBSPp « ITCBSHd - ASCn

BufvVr « BufVr + (ITCBSCn * ASCn)
ITCBST1 « BufVr - ASCn

!

make IBSk STACK and clear locks

IBSHd + Bufvr
IBSPp «~ IBSHd - ASCn
-

Bufvr BufvVr + (BCn * ASCn)
IBST1 « BufVr - ASCn
[MAILBOX + IBSKRQOS] +« O
[MAILBOX + IBSKLKOS] « O

make ANASkKk STACK

ANASHd + Bufvr

ANASPp + ANASHA - ANLCn

BufvVr « Bufvr + (ANACn * ANLCn)
ANAST1 +« BufVr - ANLCn

EXIT

51

9.5.2.2.

-- Level 1.2 Make QUEUES

make CBSk QUEUE

CBSHd + Bufvr

CBSIn +« CBSHd

CBSOt + CBSHd

BufVr « BufVr + (CBSCn * ASCn)
CBST1 +« BufVr - ASCn

make RCBSk QUEUE

RCBSHd +« BufVr

RCBSIn + RCBSHA

RCBSOt + RCBSHA4

BufVr « BufVr + (RCBSCn * ASCn)
RCBST1 +« BufVr - ASCn

make WFASk QUEUE

WFASHd + BufVr

WFASIn +« WFASHA4

WFASOt « WFASHA

Bufvr « BufVr + (WFASCn * ASCn)
WFAST1 « BufVr - ASCn

EXIT

52

9.5.2.3.

-- Level 1.3 Make BUFFERS

1.3.1 make RCBk buffer

l

1.3.2 make TCBk buffer

{

1.3.3 make IBSBk buffer

{

make TOCBk buffer

TOBuf « Bufvr
Bufvr « BufVr + TOCBLCn

i

make IRBk buffer

IRBuf « BufVr
BufVr « BufVr + IRBLCn

4

make SCBk buffer

SCBuf « Bufvr
Bufvr « BufVr + SCBLCn

4

make ICBk buffer

ICBuf + BufVr
BufvVvr « BufVr + ICBLCn

i

YES

Bufvr > RAMTOP ?

{

NO

EXIT

Print ('Too much memory used
for stacks and buffers')
STOP system

53

9.5.2.3.1. =-- Level 1.3.1 make RCBk buffer
I «0
H
NO -
I < RCBCn ?
YES
il
t QUEUE_IN_RCBSk (Bufvr)
Bufvr +« BufVr + RCBLCn

I+«I+1

EXIT

54

9.5.2.3.2. =-- Level 1.3.2 make TCBk buffer
I «0
i
NO -
I < TCBCn ?
YES
{
t PUSH_ITCBSkK (BufVr)
Bufvr « BufVr + TCBLCn

EXIT

55

9.5.2.3.3. =- Level 1.3.3 make IBSBk buffer

{

I < BCn ?

YES
1

t PUSH_IBSk (BufVr)
Bufvr « BufvVr + BLCn

I+«I+1

EXIT

56

9.5.2.4. -- Level 1.4 Form ICBK
[ICBuf + ICBMFOs] « LANCMODE
[ICBuf + ICBNRDFOs] + RCBCn
[(ICBuf + ICBNTDFOs] « TCBCn
(ICBuf + ICBLAFFOs] « O
[ICBuf + ICBRIHAFOs] « RX_INT
[ICBuf + ICBTIHAFOs] + TX_INT
(ICBuf + ICBBIHAFOs] + BUS_INT
call KRNLINIT with ICBk on stack (ICBuf, IRBuf)

!

EXIT

9.5.2.5. =-- Level 1.5 Read and Store kernel subroutine addresses
SACn « [IRBuf + IRBESAFOs]
KSTS « [IRBuf + IRBSRAFOS]
KRCV « [IRBuf + IRBRRAFOs]
KXMT +« [IRBuf + IRBTRAFOs]
KOUT « [IRBuf + IRBTORAFOs]
{
EXIT

57

9.5.2.6. —- Level 1.6 call Kernel Receive Ring Fill

temp +« RCBSIn

i

YES
temp = RCBSOt ?

NO
i

RCBVr « QUEUE_OUT_RCBSk

t IBVr « POP_IBSk

[RCBVr + RBLFOs] « BLCn

[(RCBVr + RBAFOs] + IBVr

Kernel call receive subroutine (RCBVr)

X

EXIT

58

9.5.2.7. =- Level 1.7 KRNLINIT

TCVr + POP_ITCBSk

[TCVr + TBAFOs] +« POP_IBSk
IBVr « [TCVr + TBAFOs]
(TCVr + TBLFOs] « HLCn

‘

[IBVr + DAFOs] + BCASTAd
(IBVr + SAFOs] « SACn
[IBVr + AKFOs] « NICn
[IBVr + PNFOs] « 0

[IBVr + SNFOs] « SNCn
XMSTVr « 0

e

{
Kernel call transmit subroutine (TCVr)
i -
T
QUEUE_EMPTY (WFASIn, WFASOt) ?
YES
NO
XMVr + QUEUE_OUT_WFASk
TCBSVr « [XMVr + TBSFOs]
{
t YES
(TCBSVr n TCVERR) = 0 ?]l
NO QUEUE_IN_WFASK(XMVr)
XMSTVr « XMSTVr + 1
{
NO
XMSTVr < XMCn Print ('NETWORK
i INITIALIZATION
YES ERROR')
STOP system 1]

EXIT

59

9.5.2.8.

-- Level 1.8 Start transmitter timeout

[TOBuf + RTFOs] « TOSET
[TOBuf + TOFOs] « TOCn
kernel call timeout subroutine (TOBuf)

i

EXIT

60

9.5.3. -- Level 2. RECEIVE STATE
From 1. INITIALIZE
or 6. INCREMENT
1
Temp + RCBSIn
-—p
1
YES -
RCBSOt = Temp ?
NO
4
RBVr « QUEUE_OUT_RCBSk
BSVr « [RBVr + RBSFOs]
RBAd « [RBVr + RBAFOs]
[RBVr + RBAFOs] +« POP_IBSk

Kernel call receive subroutine (RBVr)

TEST_AKVr «

[RBAd + AKFOs]

RECEIVE_ACK

RECEIVE_CCn

NO -+
(BSVr n RCVERR) = 0 ?
YES
{
TEST_AKVr NO TEST_AKVr| NO TEST_AKVr NO
= AKCn = CCn = NICn, NIC1
- ? - ? - or = NIACn ?}| -
YES YES YES
{ 4 {
2.1 2.2 2.3

RECEIVE_NICn

i

i

i

-~

PUSH_IBSk (RBAd)

i

Go to

3.

TRANSMIT STATE

61

9.5.3.1. =-- Level 2.1 RECEIVE_ACK

2.1 RECEIVE_ACK
(Receive Acknowledgement)

|
Templ +« WFASIn

i

YES -

WFASOt = Templ ?

NO
i

PACKVr « QUEUE_OUT_WFASk
IBVr « [PACKVr + TBAFOs)
LDVr « [IBVr + LDFOs]
SNVr « [RBAd + SNFOs]

i

YES
LDVr = SNVr ? ll

NO SPNVr « [IBVr + PNFOs]
RPNVr « [RBAdA + PNFOs]

t :
- l

-4 < (SPNVr - RPNVr) < 0 ?

+ NO
1 YES

QUEUE_IN_WFASk (PACKVr)

{ {

- PUSH_ITCBSkK (PACKVr)
PUSH_IBSk (IBVr)

PUSH_IBSk (RBAd)

i

EXIT

62

9.5.3.2. =-- Level 2.2 RECEIVE_CCn

2.2 RECEIVE_CCn
(receive command)

QUEUE_FULL (CBSIn, CBSOt)

?

YES -

NO
i

SNVr « [RBAd + SNFOs]
Templ « ANASHd

—

YES -

Templ > ANASPp ?

NO
i

ANVr « [Templ + ANNFOs]

YES

1

PUSH_IBSk (RBAd)

ANVr ?

SNVr

NO
i

Templ + Templ + ANLCn

i

2.2.1
CHECK_COMMAND i

1

EXIT

63

9.5.3.2.1. -- Level 2.2.1 CHECK_COMMAND

2.2.1 CHECK_COMMAND
(check to see expected command)

l

RPNVr « [RBAd + PNFOs)]
ARPVr « Templ + ANRPNFOs
ARPNo + [ARPVr]

NO

{
NO -
RPNVr = ARPNo ?
YES
PUSH_IBSk (RBA4)
{ {
QUAEUE_IN_CBSk (RBAQ) -4 < (RPNVr - ARPNo) < O
[ARPVr] « ARPNo + 1
YES
il 4

1

2.2.1.1 GENERATE_ACK

!

EXIT

64

9.5.3.2.1.1. =-- Level 2.2.1.1 GENERATE_ACK

2.2.1.1 GENERATE_ACK

Generate Acknowledgement packet

TCVr
(TCVr
IBVr

~ POP_ITCBSK

+ TBAFOs] «~

POP_IBSk

« [TCVr + TBAFOs]

[TCVr + TBLFOs] +« HLCn

'
[IBVr + DAFOs] « [RBAd + SAFOs]
[IBVr + SAFOs] « SACn
[IBVr + AKFOs] « AKCn
[IBVr + PNFOs] « [RBAd + PNFOs]
[IBVr + SNFOs] « SNCn

{

Kernel call transmit subroutine (TCVr)

i

EXIT
GENERATE_ACK

procedure

65

9.5.3.3. =-- Level 2.3 RECEIVE_NICn

2.3 RECEIVE_NICn

2.2.1.1 GENERATE_ACK

Generate Acknowledgement packet

YES

TEST_AKVr = NICL ?

NO

2.3.3 CLEAR_PROTOCOL

{

2.3.1 CHECK_ANASkK

i

2.3.2 CHECK_NICn l

!

PUSH_IBSk (RBAd)

EXIT

66

9.5.3.3.1.

-- Level 2.3.1 CHECK_ANASk

2.3.1 CHECK_ANASk

SNVr + [RBAd + SNFOs]

Templ + ANASHA4

-

YES -
Templ > ANASPp |
NO ANSAK TEST
i
ANVr « [Templ + ANNFOs]
i
YES - !
SNVr = ANVr
NO

{

Templ + Templ + ANLCn

i

PUSH_ANASk (RBAd, Templ)

EXIT

67

9.5.3.3.2. =-- Level 2.3.2 CHECK_NICn

2.3.2 CHECK NICn

NO

TEST_AKVr = NICn ?

YES

i

TCVr « POP_ITCBSK

[TCVr + TBAFOs] « POP_IBSk
[TCVr + TBLFOs] +« HLCn
IBVr « [TCVr + TBAFOs]

[IBVr + DAFOs] « [RBAd + SAFOs]
[IBVr + SAFOs] « SACn

[IBVr + AKFOs] « NIACn

[IBVr + PNFOs] « O

[IBVr + SNFOs] « SNCn

[IBVr + LDFOs] « [RBAd + ANFOs]

i

Kernel call transmit subroutine (TCVr)

EXIT

68

9.5.3.3.3. -- Level 2.3.3 CLEAR_PROTOCOL

Templ + WFASIn

i

YES =

WFASOt = Templ ?

t NO

TCVr + QUEUE_OUT_WFASk
IBVr « [TCVr + TBAFOs]
PUSH_ITCBSk (TCVr)
PUSH_IBSk (IBVr)

l

[
ANASPp « ANASHd - ANLCn

i

Templ «~ RCBSIn

i

YES -

RCBSOt

Templ ?

NO

RBVr « QUEUE_OUT_RCBSk
Kernel call receive subroutine (RBVr)

|

r
Templ + CBSIn
.}
YES -
CBSOt = Templ ?
NO
t
CBVr +« QUEUE_OUT_CBSk i
PUSH_IBSk (CBVr)
|

EXIT

69

9.5.4. -- Level 3. TRANSMIT STATE

FROM 2. Receive State
START

SBFg = 1 ? —NO

(ITCBSPp - ITCBSHd) < 3

——YES

NO

3.1 MAKE_PACKET

Go to 4, CLEAN UP STATE

70

9.5.4.1. —-- Level 3.1 MAKE_PACKET

3.1 MAKE_PACKET

i

TCVr +« POP_ITCBSk

[TCVr + TBAFOs] + SBAd

PACKVr + [TCVr + TBAFOs]

[TCVr + TBLFOs] + [PACKVr + DLFOs] + HLCn
SBFg « 0

3.1.1 SEARCH_ANASK

EXIT

71

9.5.4.1.1. =-- Level 3.1.1 SEARCH_ANASk

3.1.1 SEARCH_ANASK

LDVr «
Temp +

[PACKVr + LDFOSs]
ANASHd

-

1
YES
Temp > ANASPp ? PUSH_ITCBSk (TCVr)
PUSH_IBSk (PACKVr)
NO
4
ANVr + [Temp + ANNFOs]
i
YES
LDVr = ANVr ?
NO
Temp « Temp + ANLCn
i 1
- TPVr « Temp + ANTPNFOs
1
[(PACKVr + DAFOs] « [Temp + ANAFOs)
[PACKVr + SAFOs] « SACn
[PACKVr + AKFOs] « CCn
[PACKVr + PNFOs] « [TPVr]
[PACKVr + SNFOs] « SNCn
(TPVr] « [TPVr] + 1
Kernel call transmit subroutine(TCVr)

EXIT

72

9.5.5. =-- Level 4. CLEAN UP STATE

From 3. Transmit State
Start

Tenmp + WFASIn

YES -

WFASOt = Temp °?

NO
i

Remove Acknowledgement and
Initialize Packet

TCVr QUEUE_OUT_WFASk
BAVr [TCVr + TBAFOs]
AKVr +« [BAVr + AKFOs]

t

t

{
1 YES
(AKVr AKCn) or (AKVr = NICn) ?

NO
{

QUEUE_IN_WFASK (TCVr)

PUSH_ITCBSk (TCVr)
i PUSH_IBSk (BAVr)

J

i

GO TO 5. TIME OUT STATE

73

9.5.6. =-- Level 5. TIMEOUT STATE

From 4. CLEAN UP STATE

{

RTFVr « [TOBuf + RTFOs]

4

NO -

(RTFVr n TODONE) = 1 ?

YES

[TOBUf + RTFOs] « 0

|
temp +« WFASIn

i

YES -

WFASOt temp ?

NO

TCVr « QUEUE_OUT_WFASk

I

PACKVr « [TCVr + TBAFOs]
AKVr « [PACKVr + AKFOs]

1 NO
AKVr < O Il

YES [PACKVr + AKFOs] « - AKVr
QUEUE_IN WFASk (TCVr)

4

[PACKVr + AKFOs] « - AKVr
[

Kernel call transmit subroutine (TCVr)

i

i

Go To 6. INCREMENT

74

10. Appendix C Protocol source code in FQURTH

o L TE

0 Compiler) HE 7

i OFOFRTH ¢ THMMEDIATE Goo0 FREVIOUS HAME 4- CTFA 4+ Rakk

o fl ! SO GOOOT VO b i SET O VOC W

L FORTH : ORI LE D FORTH COMTEXT W& 0003 COMTEXT Wi

4 ‘ EXED COMTEXT W! o3 TARGET HOST DEC TFAL

Vo0 g el Lor 0o o HoWy D mMov 5)4+ Do ADD 1 #& DO bbb
g DRI T S TR I Do D1 MOy po# DI OADD L1 8 CHF

/ CEORTOTE DO B U moy TEALT BERA THEN I 8 —-) MOV HEXT
foe ol O 0o 2ol LOT ARORTY dictionary full”™ g RECOVER

{Ohe UELL oo Do FOY BT eEE # DO ADD -&5536 # DO AND

1o S TU I~ B B T AT BT
T P A S HERE O M o+t s . Lo 4 oLLoT HERE 4- P g
A T I SR S woAbLOT O HERE Ee WD
o i COmMPLLE BOLEE #D MOV 1 v+ AO Y+ MOW G By MY MEED
i
i

1A LLTERAL D M TLELL IF COMFILE long . ELSE
j, COFFILE cedl W, THER 3 ITMHED IATE

ot LIS

KRN 4 3 BN ¢ SRR

-~

(¥
ol

1

11

‘.i 4 75

i

ETRES

Lo bt iy mBhim Gibibme Febd o b il L N T Lipioatdb prosdoy btk b h s

o barged Compiler for b By EHFTY DECIMAL

Uor HET L A0d HELED A R IOLG WIDTH Wi DECIHA
Lo EREDONS 20 R R 1306 CONMSTANT ERNFI0

S VST NSRRI SR WE EE W S FIM WD

4 o b6 s bHERE g

FEGD B2 alual

Al 4 fbiat CREATE AWl 1 Wy
ik akL BRI ik ik "R WYAaR1ARBLE VOO
vied b al bow for e ERFEO application DW uAaH)
o s LGad HOST DEF TRITIONS
O [MO : HERE (— &) H @ 3
P b 0o R RE e O : THERE - a2 R @ 3
11 R PR AR TN A DL OFSE WO 0 00 TR 000D VO W
i HE & 20 BREASE i
[T O HDE B g RECIPRHEIR . B ETAT T i el
ja 0 Denapd e oo Rabh & 200 LOaD { fsmembder) =0 LD
P albdlbir O o

i P Corapd b e Lo BAPT Uhienidl ol oo appl D LS 3l =i
I Ul T Fab sl BT

PR {URsRY O e
A - T L

ETLL HDE ZDUR W e W
Far 4o

"

s TO o e “1UY

T {oa o) i :oTW o el EN TR
Plbb b0 B I T 0 w0 :

Tit, MERE TC! 1 H Rl : W, 7OGAFE HERE
\ A Gk HERE 4 T

CROVE s od o SR T R CHOVE

PDUME § e) (IVEF spdgfe il CFO1 7 ULk 3
[@D om w mEARES D TRE & LR L0

CLISH R BB o e BER DD DRF L BLOCE 1
NEDETE Lo0ed 4+ LR DRiE

§

A4 L P Ty Lo PR sk AR

fcE a0 BN

B R SIEL B,

+ ol RRRE 1D
+L 0F BPaCE s
ML B

Lol

SRS ANS D s d sees Lhese Lar et COPFTLER instructlons

FRF A0 Ly Compd Les pod P ORTH 4oy T

Pleser iy QiQir Suis A e OO Pled to blooks

ey L G e t

space, n bytes at s
s bk R Chorb e o Lo ok dard dictionary
PRIFRE L Pheond @vmi babbe taraet Rar ocation

Ty b DL Dariges et yel st

P € g it AL

wiw o i3

14 foe bens Road e Fert el SEFOUR GuiL
| ' ! o1 £ 26 & GF FUOix Cuality

s MpsED SFRE AMFPS S TR MEBFC 101 B IN (HoEE -1 polyFukb

O ¢ FRHF-30 Ynid load screen) oaded froam 12060
1O % HERFE 10 — HEAD ! HEAD DUF 4+ 28 MOVE
; HMEY 8020 HERE & — Th! DECIHMAL

40 Muoleus) &3 &% THRU 108 109 THRU oo 7L THRU
=0 largeb compillar) OB E THRU FORGET VARIARLE

19 Ja A THEL O MLl b proogr ammer) 127% 1277 THRU
HERE . THERE . DECTrAL

& iUHENVES S LOAD 1010 WIDTH W

oo e L CHALD

J Alas LUAD

Gon ERF-20 Load Blook
boHELF L HORT : AL

SoroALLOr O : ‘ Dy FO4000 EOL FROM

wocac DTOTIOMNGRY PROM WINDCW FPROE 8 4 (R

4 Fodo00 Fol FIRST DECIMAL

U FORET 2Ras 286+ - DUR R TOFPERASTOR TR B S
(NI

rminald O B1 @3 THRU 79 LOaDD

¢ Liasbk) 0 96 98 THRELD ¢ Imit Terminall 80 LOAD

1307 LOAD PR0E L OAD

i (HER 1000 H'5 1! TG00 H'S 4 + T DECIMAL)

i HERE H'G T HERE H'& 4 + T!
L
1

|

i

RN N

Colinks) HOST HEAD ram 2+ 32 CHOVE
: HEY HERE . THERE . DEC T L
“ HOST 1. -
P FOTH LR CR CR TODAY WE L DATE 2 SFACES @TIME . 11ME

TR
Do Tniliae) BaM values scoreen loaded from scoreen PADEY HEX

CRESTE OFERSTOR COFERATOR TORBERSGTOR RO -y
I TOHEERATOR . T R N P I G (T TS R R COFERS FUOR BO
[. FARS IR A I a0, L,
™ (R 0o, O, FFRFOLS O FRFOEE)

& o, 1 2 T S IO B T 1o O, DE W,

N S AR R Y ik, 20 Gak 1 W,

Fid o, 0 Oy, D, LTS

i . S .

; ‘- FaA T I
. ' 77 TR GUBLITY

————

O TR PSSt i Y o o b P R PR U oo sl I RTCTEST R procd bl 1

G0 FRFAD power up screers Losded Frorm Ly HE R

UL DR AR PIUVE

ST o =R 2T v
g AL

A CiFE ey o

4 A B e AT A [EER
S o bapyees Pud TR

pifo e T T T R S TE £ ETE PRI NS

SRE . A E00D #W MTSRY
L et 1 mMOY
v CEERGSTOR DU # LD MO Py - H o5
14 REZ T # Al oy S B TN

1% HERE : 0oy FOWER--LIF LIkl

v Fleewe code too BP0 HE 5

+oTWE
[H

W wiEeEnn Froiatd
powlengg ST
Ay epgames DL 2 ¥ wEenp T % wlenp LOOF 3

Hoor o gonenp CEO04 WE CLO04 WY Clodd W SOED e b

Gooonil PAGE IS

1 "VE. e ey W e -
14 78 r B0OR GUALITY

AL

et B ek et ek

+

il

bl

RN

R R e N A A P W LT

79

Lidngdb -

rod b Lk

: biv
ot

b R GUALITY

seoun sk Shes ablss tReHFSEL w0 s b Libiénetie) prisd e LB

.....

14 80 o

4

| sy IR { ik ("”“ i priy i ri‘ L‘F“K | B

ol ReEEL SRS RS TR MR L

1

o

'\,J 0-.

81

. N
oA e T
I's

Gt bkl sk etk TRW MBRL 10 i Libdsiibo - d proad b Lk i

.
o
£}
1
o
o

CONTROL BLOCKE CONSTANTS) HEX
Foiond STANT inich

o G i D CONSTANT TCRC

G { FO1180 CORSTAMT tsbhndld
&

s 1E CONSTANT MPUset

o Foiled COMSTANT head r

82

A

EIRIS

oL IR LA)

At FESEL HPMS AMPSSTRWMBRL

17007

LIar

0 FMFAD FEernel call routine i

1
wOUOhE call _enp { parm@® =
R 504 AD P 5
JEBR R

wukiiE -
I A
=) M

i £ i)

1=
1

)+ 8

[

ERF -0 BElhernet board appl.

[N
P HERE ASSEMBLER
A Fioliéd AR
4 4 ATO RN
il 4 HE O A0

MO { ot
MY {omove
0T { boamg t

CHE 0= IF O whik

40 MUY O wrap

£5) et

FOlls0 # A0
FOlizo #
Tk
9 FOli&ad AR
10 {F RTS
11 A FOl11s4d
10 CORSTANT

&
7
8
ATI I i
THEM { head =
SE MOV RTS {
whirndly

cheok 1+
taill
Lpreket

(rs

e Lot
S
flcacct

O 0 BERP-S0 BErhernet board appl.

SEMELER
P FOlo1s
A CORETTSHTY tehndlr

FOHERE 68

aBR Moy

4 83

[Ng=25

£

aseember

parm@ DO
) MOy
o

Ly B

thlocks

tail 2
Ry
all po
it wrap
ar card

et =

e bail

me oo

e
e

Flaoy

.
]

[I
(W

(&R~

14

89

MOY REXT

Jugpede- T

toall 2
)

2

aronst

T

L&l l
s (v, dogy T
pointer)

brercyan

[WhE

S

Juri O

ol yFubE L AL

HE X

HE A

i

wpdats pir.

HE X

Ulteneth - 3

bbb B ARGy TRW O MERL L] IRTAN A S RE

RSN 3

O 8 ERP-E0 Ethernet board appl. e o dun—0&e-85) HEX

HGESEMBLER
A H15
Ao COHEET AR

HERE

bushindl vy

O FRFTAG 10O for UaH ampe protocol fApril DOHYD [t 2.

mEed L

anpinashk

{ ey

I R

?

1o

Phod T Bus

addr

o OFFFF @Akl Al e spae)
1 EMFmashk { adr

OFFFF @Al Fooond + g (

o)

mask to ERNFRD privates adr spaoe)

0410

MASBClmask {
Ay 00

DFFFRF

COMS

TanT S

EAisy

LR @

e b

space)

o HMskil

s seh _enp
ini b

rhin
boshindlr

SWAl

:oani_fidf

MFLlzet

tancmode OVER

dly OVER
Sikdiske 18
e+

o v boh

FiFLIc s
S
i
+ v
18

410

[R

[

RUL

e

b FOd00n4 @ DU SUbBRD call enp

Tl

ERASE

i
O OVER
whid e

r bob

DLF

4 ERASBE

Wi
14

R
UE

Meacd

b

Fiol tBus acr

OVEFR 4

tail v

s

T A

b

-
"

¥

o UL

L.Oéah

RWTS1P] Fors LOAD 21

84

v Gaw

S s PV
i Lt y'Tv
KIS 's.;br‘ﬁ-! 4

ks S TR MSEL L Ukigab~ 1 pol v uboin

Cagdi i)

LA ’ R
14 85 R R N NN LR

- iR
15 -

Ty RN Y TN E= SRR 1| kSO O S0) I kel o

S I

L e

CEHET &l

Akt kil s
4 fooocie

1 i

i

EYaily

Chorrten O

3

Cy o onEtd

£

86

constants

(WY R D

ard

Fabd Y

pivsd

Talave

NE RN I

variables & 11-8%)

ARN

ERSIRIRIY I risE

AP Uit R

""\F & fal iFC i F W/ lai NI IV Uktédb i pod yRLkcER

DEFINE CONSTANT 1 === 5L 5-24-8%) HEX

HLCN
ST OCON 00 CONSTANT NICH

DE RIET AN T NIVL
De CONETAMT TOFOS

D& CONSTANT ruLPU5 4 CONSTANT TESFUS

DE CONSTAMT ANNFOS
CONSTANT ANRFPNFUS
JETEMT SAFOS 00 CONSTANT AkFOsS
GECONETENT FNFDS 0OF CONSTANT LDFOS
ANSTANT DLEDS O CONSTANT ANLCH
ONSTANT HEAFUS O& CONSTANT REL o4 CONSTANT RESFUS
CONSTANT TRUE 0 i i
CONS TENT TOVERREN "CONSTANT ROVERRCN

l1&
) =

o4 CORSTART
(ST= I AT
D1y COMSTENT
04 CORSTANT
D DONST r'"‘:N'T
OO CORST A

£ | F NF s

Yk aRLEY HEX
SR

1 B E } [[~ ESHD VaRIABLE ITCRSTL

: : ”HF TAaRLE IRSTL
VARTABLE AMABTL
. Yok IARLE CBSHD VARLARLE CRSTL
‘,J.nh! E o 'ch] bl Frl BSUT VARIABLE RCBSHD
1:11 L RS T JaRTARLE WRFASIM VARIABLE WFASOT
: ¥ WE &S

GACNLE VAR TARLE SACKNH

] H*’l E SR
Sliakl B TUHL
Vesko @b Bt
AT S S SN

VARTABLE RUBSOT VARTABLE RUBSHD
87

Faril g

A

N RN NP,

S

1
i
1

14

Firimb b obE abibos TRE MBRU (VSRS IR NI) Libidngtb - prish b i

¢ DEFINE MalLpox OFFSET O HEX

COMNSTENT MeILEOX

O CONS TARMNT
A CUNSTART
g CONSTAMT)
o0 CONSTANT HMBSRNUNOS
10 CONSTANT <alivels
149 GUNSTANT BERROS
14 NS TANT NEWRLIF
TENT DLDEUF 20 CUONETARNT FLUS
W0 CONSTAMT oldhmp T4 CONSTAMNT sah 268 CONSTANT sal
STERT mal

VT AT b A04CE CONSTANT rhmp
TEMT Fvlbicss AO04%0 CONSTAMT Trane
SAaD AD4A0 COMSTANT ey

O
CORE TANT

Ex i

5 |

POFUSH aMD PO OFERAT TOND

RN R i addr BFo--]
DL @ aSscr o+ DLP ROT Y g
Btk ioadde NOOSF TL e }
@ OVER @ = IF DEOF MAETLROX ERROS + !

SeieE DREOF DOPUEH THEN

RIS {BF

DUF @ @ @ ABON - BWAF U g

O (NO SFOHD - addr

g OVER @ SwWae o TF DROFP MATLROX ERROS +
ELSE SWaP DROF DOFOF THERN ;

88

“

O 0 PUSH POF DFERATION O STHUEDS

FUSH 1TTCERSE i addr -
4 I ITCRSFE ITCRETL FUSH 4
v FOR 1 TERSE (- addr 2 O ITTURSHFF ITCRSHD FOF

FLSH RSk { addr -)

I OIRSFEOIBSTL FUSH :
S oy POFOIRSE 0 - adde
1 4 TRSEE TESHD FOF :

G FUSH ANAEE PROCEDURE)

a2

FLUSH SHNASE { addr ptr o
e (WINtS S o+ @ [anAl

<t LUF + g

il [y

& FHFOS

i}

.....

TEST_ANALE P e
1o ANASET DUF @ ANLEN + DUF ROT 1 ANASTL @

11 1F o MEILBOX ERROZ + ! THERM 3

S0 DUEUE OFERATION 1, QUEUE TN - JOIM GUEUE

COMELE FULL O IN OUT -- T
4 @ SWAF @ ASBCN + - 0=

& or ERER GUELE i acdr HD OTLOIN o)
i DUF DUE @ ASCH + SWak 0 xR ROT 1 @ P RE DUF @ ROT @ =
& IF Slal @ aS0n -~ SWaF 0 ELSE DROF DROF THEN 3

Tor s GIELUE TN foaddr HDOTL O ITH RUME IR OUT -)
i CENIELIE FLILL ¥ MATLROY ERROS + 1
1 BLEE DROFOEMTER GUBUE THEMN 3

14 89

UB&Ek -1 polyFubibbe S

fevon braak D SR @S THWSMSEFL 1S RN WA Ukidebo- 1 pol ybuboie

w1 IR
O 0 RUEUE OFERATION Z, QUEUE DUT - SERVE CGHLIEUE)

COUEUE BEMETY IR OUT e) @ SWAR @ - e H
s DELETE Qs {OHD TL OuUT - addr) DUF DU DU
4 @ ABOM + ShaP ¢ @ @ R DUF @ ROT @ =
bl IF SWAR & ASCH -~ SWaF ' ELSE DROF DROF THERN H= g
&oor o BLIELE RN {OHD TL OUT NUME IR QUT - addr)
7 SOUEUE EMPTY IF MATLEROX ERK 08+ !
o ELSE DREOF DELETE GUEUE THERM 3

ol Loadcdr e }

3 CESHD CESTL CRSIN & CRSIN CRHOY CLIEUE TN g

4 @ LUEUE _OUT S { —— addr ?

b CEBSHD LoCRSOT 7 CESIN CROT GLIEUE T

& @ CUEUE IN RUBSE { addr - }

7 FORSGHD RCESTL ROAESIN 8 RCBSIN FROESOT UL T s

8 @ CLEUE OUT _RCRESE i - @l)

9 FORSHD FCESTL RCRSOT 9 RORSTH RECRSOT Gillei - it g
10 ¢ BUEUE I WFABE i addr -- }

11 WEASHD WFASTL WFASIN A WFASTHN WFASOYT GILIELE TR g
i r OUEUE OUT WFASE { -~ addr

A WEASHD WFASTL WFAS0T B WFASIN WAL GHUIELIE (WA g
14

L5

G0 WORD DEFIMTTIONS —-- COMMON DEFINE WORD Sl H-0l-BY)

s R REECE i addTC addlik - } FUSH TBRSE FLSH TTORSE &

ST S R S i e andTh addIB 2
) FoE U Sk

FOil TRSE OVER TEAFUS + WER SWAF !
] OVER HLOM SWak TELFOS + W!

"

13 ¢ PEAUH FOoiBic wWe SACNH W! FO131E @ SA0NL ! H
1 s UESNEN O MATLEROE MBSMONOS + D

14 90

G0 WORD DEFTHMITIONS - UL LEFINE WORD 5t &—01-89)

o FalERTd |
:;.Ili;:

[OBAFDS + 2 o+ !
I OSAFDE + W

O 0 BETOUF Meslh BOx -

vor GETHGME 0 - 0
MATLROX MESHCNOS + @ SNON Y g

5 METLEROX BET WP { -)

b MATLEy o

7 0 1 NEWRUF o+ ! O3 OLDEUF +
O R ERRGES :

CERNEL DAl RECEIWVE ., TROMEMIT, TIFEOUT SURROT THE

FELORECY o oaddr oo }
4 ran oS b @ mall enp DROF DROF 3

- = - T call enp DROE CILEUE IN_ _WFASE

;or REL Y IME QLT { addr -)
10 gy O @ call o enp DO DROFP 3

91

v RmE L mbE kb R kL b na Liptétb) preal s

B T TP NPTt 20 ISt S M ETS| k B MSE L { R I Uibidnedb o} prost v b Ly b

G UOFERATION OF IBSk, NEW, OLD BUFFEFRD HEX

v ohiknew MaILEOY NEWBUF + @ NO1 IF FOF_IBSE

i GEEFF AND Co000 + MATLROX NEWEUF + ! THEM 3

4 1 chikotd MATLEOY OLDBUF + @ 1F MATLROX OLDEUF + @ PUSH 1hEk
= GOMATLROX OLDRUE + U THEM ;

Gf FREE MEMOREY SRACE -—- FLACE & KULL WORD Sl &--0hi-Es)

(GH -

o0 DEFTRE CONSTART) HEX

CORSTANT BASEADD 0 CONSTANT EFSC

GRT O ANACH 20 CONSTANT BUN

AT OBLOM 0% CONSTANT CBSCH

TTCREOEM 14 CONSTANT IRBLCH 27 CONSTANT ITCRLLE B
AMUR 10 CONSTAWT TCRON

TOCBLCH

o8 CONSTANT TOSAFOS

14 CORNSTANT RURSCH
OR COMNSTANT SCBLCN

10 :
10 CONSTANT BE
TE CONSTARNT METLUM
¢ OCONSTANT TOCN
92

SR REEED SEME GRS TRUMBED 101 00 DH&HEE -1 pol yFur s B

¢ DEFINE VARIaABLE @ 5L &-05-89)

sk L ABLE BUFYE

YoakRITABLE ©_mem

< ViR ARLE SUBUF VARIABLE 1CBURF
% VaRTaBlE i

£
)
1)

G0 PGEE STACES, TTURSE IbBERE ANADE SUaCRSY HEX

o FMESTALED

4 Be 0T

w DUF ITCRSHD ! TN S ST By
& {TCRSCH R %+ DLIF ABCH
7 DUF ITRBHD ! DUF & b LTRGHF
a8 BCHM ASCH % 4+ DUF ABCN 1E i
9 DUF akissHD DUF GRLTN -~ ARASFE T
8 ANGCH ANLCH * + DUF ARNLCH - ANAETL !
i BUFVER D g

D0 MaRE BUELES, CHESE RUBSE WEADE BLIEL

i

M GLE DES
[=1uk:

CRGHO DLF CRSIM DUF CRSOT !
¥+ DUF ASCHN - CESTL !
! D= R I ! DUF ROBS0T !
CRLo¥ 4 DU - RORSTL !
! DUFE WFES TN DLF WREAS0T !
+ DUP ABDN - WEARTL !

93

N -::j'fx'._ o)

]

G

b

i MakE BUFFER

1o i {
RUBCH
FLROCH
BOR OOD

VE T RLE
[E1RTE
DU &
DLy

aih
]

-

(T4
=
TR

R REUEFFE R

! iritialive

s b inat

Loisd

[

Pk &

o,

o RUBE,

Al

R —
0
DO

i1

Uosodr

LiE

TSI

L !

P fesr s

MESTAURS

e
=
=
-
T
-

T
SCBLCR +
TCaLaH

TCRE .

aciolr)
DUF CGUIEUE TH
DU FPUSH TTORSE
DE FlSH TREE

actcr
RLOMN +

'. “

"

IR

3

i BURVR

Pk GRS

94

Sk

BLFFERD

RCHSE
TCHELEN
BN+

@ MERE

MEBUFFERSD

ROBLCH
+
LGOF

TISIRUF

»
"

LiEé bk

+ LGGE

LOOF

.
X

pread vk bbb

BUFVE D g

Ao BESED SPMS AMPS/TRW/MSFL 1/ A0 WROBE-1 polyh il

D T 0]

G0 1.6 CALL EERKEL RECEIVE RINGE FILL - Sl B A0-HY
1 HEX
: RING FILL TEMF —- TEME £ 2
DL RCBSOT @ = IF TRUE
ELSE GUELE OUT_ ROCRSE AR
H_CN SWak RRELFOS + W
DUF FOF 1ESE SkaF RBAFULG + f
rap b o0& + @ call engp R OF DRGE
F il SE THEM 3
: do rfill I L
RORE I @
1 BEGIN RIMG FILL TRUE = URTIL DO

u
]

ol o BRI SR SR S

-~
i
o

RO IE

G0 L7 METWORE IMITIALIZATION PROCEDURE 1 —-- Sl B-n1-v)
1 HiEx

Ao Bast O INGTY { addyr - 3

4 =

. O MICH FFFF FFEFFFFE
R

FILL FRCEET 3

17 95

N RN AT Tt S BN =1 o i K= R 1 i Lk | Fl A ek L booed iy Uhbaeaeib o) brusd o

G 1. RETTWORE TMITIALTZa0 T CROCEDURE 2 —-— 8L S-31-8%)
I £

o eETat BERE L
4 e b
" JSE R RN

GUEUE TN WFASE

W WE EMETY NOT UNTIL
CIOET B sl TRSFOS + W@
WM G 0= FLeE 0 FLAG @ MATLBOX FLOS + !

G PMTTIEL Y AT TOR e T HE TR TRITTIML L ER Sl &L EY)

HE x

Seoos MWETIRLT i

4 N | e Vi adeiy THaddr)

i k;

: [N T e
B SR S

i E4 G A R N W IN

S UE 51 Sah ! LU I

i R Il N 2 8 SO S P S TR [LEAVE THERN

1i RIS

P o

|

SWaE W

sb 1 iy e Catar &l

o

: THEM &

choh s U mbrs @aMPS TRWZRMERC oalson) ST =1 SRl M WY SR S SRR O O PR

G0 INITIALIZATION ——— 1.8 XMITTER T1 MEOUT Gl &-0E-89)

wow o VEFD TIMEOUT { -)

4 TORUF @ DUF RTFUS + TOSET SWAF W!
w OUF TOFOS + TOCN SkaF W

5 FEL TTHEGUT H

8]
i1

id
11
o LS

D0 FRITIALLZATION --- FILL o TU MEMORY LOUATION Sl &-0F-89)
HE =

1 MEM
ASCH * 4

1TCRSOCH ASOR ¥ B

AMNACK AMLCN = + [MoABON ¥+

RURSEN ASCH % 4+ WEASCH ASUN + +

M RCBLOCN % + TCRCH TCBLUEN %+

+ 14 ASCN ¥ + 14 ABUN ¥ + ASBUEH -+

px

o menm -
T Rl mEn I MEM BHaSEADD t mem @ I S W

P

LRI R N SR]

97 D e

14 . e . ISP W

15 R TR I e ‘:J‘UALiTY

Sty Baiobl

L

mhds ebibo s TR MRG0l

s

Lildereth 1

LS

217

TEGTIMNG —— ITMITIALTZATION 5TATE
Febgbd THIT
O bp !
ortmp !
Oopviox !
tSACH
MATLBOX SET L GETHAME
Mes 1L ROE MBSHORHDS + 8 ©
PEM T IMEGLET
1 MATLROY RDFGOS + !
SEUNH WE MalLBOX sab + W

FEMOH

METINTT THER

Méd LROX

SHCNL @

98

sal 4

pavs ot

STy

L PR

sk BeskED BPERE akPss TRESHMEBRL Tooly L& sk procd b Uik

NS TR W

103

FOET LIS

! 99 ‘ “:.J SRR Y

R R PR S BT S S TS O ol O P i b=t gl oot s Lipiésb. - d IRIETT A RIS N

comer LT8G

O BEXIY

10

E1VE STETE —-- .1 RECEIVE ACENOWLEDGEMENT 5L &0 —EY)
FEDE e oL { addRE temp - addRB temp)

K WEUE OUT WFASE DUF TRAFOS + @ DUF LDFOS +
A SRETS = 1F DUF PFNFOS + Cae | s
4 - [sWak DuE o o= ROT OR Sk —4 » AN

G GUEUE TN WFASE THEN
QUEUE TH WFASE THEN R> K> 3

r ok Poacl o - }

e DUE WF @ = IF TRUE
1 ELSE FACK OUE QUT FALSE THEN Gl
i4 LTI DROF FUSH LTESE 3 o

100 ‘

Vet BpsSED SEEE ARPE S TRM MR b o ke -1 pol yFORTH S0

O MEOEIVE BTATE - 2 RELE TWE COMMaRD Bl el s

actoRE)
addTil addii 2 e
5 MG
Mo W@ ShialE 3

4

n
"

€ @ CHE COFMSRD
4 AR OS L CE RO SWar OVER
10 1F 1o BOT LY PrE LUEUE IR CRSE IERSTE 6l
i LS - 1 S 2o QAR
15 - ER DROF THER 3
i

0 RECEIVE STaTE - e REOSIVE COMMEMD Bl 6-01-8%)

: B ekUH T
4 oLl
‘ Fabde’
BT
IR

1F

PG TR
44 Fal B8R THENM THERM

lo1

et st)

14

P L

(.}

163
11

P4

P

R R S M LSRN |)R s L i

{ RECEIVE 8T&

:COM RETY

CREIN CRI0T

BLSE

THER

Exid

TE e B2

e —

i oaddRB

SREARCH CON

"
X

PRUELE.

EER R PRI,

RECE IVE

b)
FULL

102

COMMAND

IF

Lt

gl &—01-89)

FUSH TBRSE

RN ARTS RN o s

Lo

RS D) BFME ARG TRWMSFL 17

Lol

O EXL
1

10
11

14

P

a L 1sT

GTGTE e S d RECEIVE TR,

0

kS {“II

addih
EsR A SHD

TiabaSE FOUND { addRE
GUIF DU BNFOE + Ca

bl BEGTH
LlF
ElSE

@ o LE

AMMNEDS + 0@ 1
FaLse THEM
FLISH ANASE

BNASFF

AL G+
DR

LRTTL

Loy

i RECEIVE STaTeE - L RECEIVE MICH

1 HEX

addRE — acddkRE 2
addil add IR
w1 LDFOS
ROT SaFUs +

HE

MLICH
PR WALV - S G

i SR OVER SNFOS +

& OVER O NTACH

Feo FILL PRCEET

i

+

B TWIN CI TS T call enp {3F

L]

103

B A

@

3
O
DUF

(=

L&t~

Gl ae

ST (MABE TRUE

i
HE R

THLE

o] T I St o R)

ASCHN + WE SWAF

QUEUE TN _WFASE

£ -

Jrisd o or

@

TS ey

v Dipamb Ly wmbm o s PRWE sk PN RN

RRSN!

O RECE IVE STHTE --- Z035 RECEIVE

MICH CHE (addRBE -)
FANASE FOUND

at

D0 RECEIVE STatE —-—- 203 RECETVE

: NITACN CHE { addRB -)
GEMERATE Aok

.

10O

Lish

oo RECEIVE STATE —-— .7 RECEIVE

ICLEAR WEASE e)
4 WF
& HEG TN
DUF WFEASOT
EL5

@ = DUF

THEN

104

COOUT W ADE

Uikttt -

RITCN

BT R

R

I+

uinl

SL &-01 -89

Gl &L EE

S &—-Ul-

TRAFOS +

89

fa

1

Lo d

N SR

2104

HEOOL HASED sHEMS AMPS/ TREMEBFC A0 00 Ubedk -1 polyb b

G ¢ RECEIVE STATE ---— 2.5 RECEIVE NICL 8L &-01-89)

ROBSOT @ = DUF IF

& CORGHD ROESTL ROBESOT 21 ROBSIN RCRSUT QUEUE _OUT
c vep b &+ @ call enp DROF DROF

o THEH

11 LNT L DROF 3

LI

O ¢ RECEIVE STATE ~-- 2.5 RECEIVE MNICL 8L &-01-&%)
J» 1

SULEAR CESE ¢ -)
CESIN @
BEGTRH
DUF CRSOT & = DUF IF
: ELSE QUEUE OUT CESKE PUSH IBSKE THEN
UNMTTL DROF 3

ol 11 BN SRR

0 RECEIVE STATE -—-—— 2.3 RECEIVE MICL 5L &-01-89)

CLEAR FROTOCOL (addRE -)
4 DLFE GENERATE ACE
CLEAR . WFASE

ANASFFE !

15 105

S

N S Ubigaptb § 0 prodyRu b

R R T OB WIS Y B RS i1 e

D0 RECETVE STaTE OFER&TION 1 - Gl &l -89

)

COMMERMD G DU
‘ QUELIE 0T

4 iz RSHD

o
A+ DA
% sk ! LA DL

o DROF DROF
OVER aHF SE

o HECEIVE BTATE OFFRETION & --- 8L &-01-8%)

COM_ RECY
NITCN CHE
FROTOCOL

F DROF
T DROF CLEF
MIACN ©

(18IS ML
A MITATH
5 Bl FLSH TE
i THER THER THER THERN THERM 3

o 106

S0 ERBED HFMS ARPES TRE MSEE

150

recelve masseqge) HEX

1 A047E CONSTANT tp taill
:ine v hesd { -

2 fead @ 4 4+ head -

4 IF v _bob ELSE head v

= THEN hisad v ! 3

It

o { _—)
@ tp teil !

Foromsg
& tail v
BEGIMN

DuUe @ tp tail

i

0

THERM

@
ing o head
L LRI DROF g

Lo duply omesg OVER

@ ! FERCIETW

T &rs

@

PO

(T I

STATE DFEF

{

a0r @ =

Fwliase !

G Out FCVER
FLISH TRSE

K
&

(=}

FORS0OT
7 COMMANT
ELLSE DROF
& THERN
PINT TH.

TSRS

Exid

i@

1701700

)

=

head

= IF 1 ELEE

! AERO0D recr s Lo

trans

+ recry !

G011 -8

4
}

DU

{ test

FiOr AlND
THER

iF
£ o
MO

ElBE
Il =Tol
IF

mseg)
daeply _meq

107

UB&8E -1

DUF @ @ QUEUE_

Trans

LA

pol yFORTH

IN_RCESK

@ Wig
LU

PaEFd GHE

Ceedeien)

it Ll

i

-

000 N O L B

P I A

]

Liermbois

Sl

Bzt

TROMNEFTT

HE =

SOUD CONSTART

hl

COTROMEMLT

2 PAUEET FOLND i

b

AR SR W B ot LU i Rt SR 1o

STATE PEF TH

TR ONE

S5TATE SEARLCH

addTC
SWar R R
DUF 1+ ROT
For ANABFOS
Fltl FACEET
BEL XMIT :

crc
DUF

s
4

EoVEakIAR

TR AT SO)

add B

1 AMTFNFOS

+ WE

108

LE e

=1

Temp @
+ DLIF

@

Shlak

(M sexad o

FLfts

S-E1-8%)

Ca

R

i

presd b U

e JE Ny

) BEL

g OVER

{ OTRANSMIT STATE —--

SEARCH { addTC

DLE ANASE
ELSE (WER
BWAF
ML TR+

F
OVER ANMF
DIROF FAC
F AL SE

ElL Sk

HEARCH ANASH { addTC

DUF LDFOS + G
!
£

b

LMTIL 3

s FAEE PACKET e
FOF L TORSE DUF
OVER TBLFOS
TESF (S
OVER 00
O MEBILBOY SEFGOS
DROE FEL XHTT
SEARUHARNAEE O

p—
r1]

< Flen L EOE

Vol TRAMNSHIT STATE
HE ¥
s bt { 2

@ e

SEADOE -+

FraasED sEEs aMbPs S TRE MR G AN

SEARCH

ey

CFERAT 0N

SRFEUS + @ 3

-+

aca 1k
ANGERD

1oMeskE

CLF
RIS

4 |

b

@ MA L ROX

109

AMASH

ET
THE

Ciptéetk 1

Gl S-31-8T)

add B LDVR temp® -—-— f 2
LROF
L@
FOURND TRUE

DROF 3B BACK

THEN 3

e 3
/

FesCRET

SEAD

B 1_

Figa T ROX
FHLLGHE

4

b

IFOITOREPF @ 1TUBSHD

Wim o+

cldtmp + !

@

priod sk Lt

TR L

DU RaT !

- G

@ MAILBOX OLDRUF + !

k.

THRANSHIT
L

21T

STATE

TEST IMG

110

H— 1589

Lilidntst. o}

L.AM)

ol b UL H

iAoy pESED BPRD eSS TRE A Pk By i Ubialb -1 pol vFORTHS S0

O CLEAN WP ST8TE - FEFOE SR, ITRIT FACKET Sh D31

e acho T addlEB AFEFd 2
O TEEFOS + @ DUP akrFas + 0

A Febt @R ITMIT
4 CITE LI LY

o DLF rtmp ! :
OO REMONE
7 R €
&l [LiF kTN
Q@ Elsk

D.

CHHELIE TR WE

recr s ! iF sEORAUE
THEM ;3

L DL EaR U STAaTE OFERATIWE - Sl E&-D&E-BT)

DUF TF
THEN

B 111

ik L SR

LT IPREDRT
X
MEG &b
i
TIMER L.

G

» T IMEDU
WFA
REG

(RIEN

i b IMEGLY

ot s

PR S

STATE
;

It
T

SWar aRFOS + O

TR MEEFU N

T Iy
add B akrFd

{)

W ASE D

DU GEFDS + D@

= NE
Bl Sk

T {
SN @
Th
DLF
ELOE
It e

STaTE

i
TORLE

RIS

G AkVE FEL

IR RN

ITRTERRMAL

TEAEFOS
DU g
CEMTT

-

L L

@

BHD O

MEG AEVE GUEUE 1IN WFASK

WEESTT @ = D
TIMER LLOOF
OF 3

OFERATION -

@ RTFOS + DU
! ST HEDUY

LF Ik
THER

e o

W TODONE
ELSE DR

112

Likiébsb 4

THER

FANT
THEM

.

I

"
a

pesl wbUR e S

YD 7 Biasib s BEME aMbsS s TRWAPSEC § o0 00 Lk -1 provd PR A

O 0 buaD PROTOCOE e s o

LHOE

THFL

14 113
15

i Liesmb e SRR obibFS s TRW FISE G IR A Likiéigh, 3 ook bl b

GEFSET 3 HEY
STANT MATLEDX

4 o DONESTAMT Sk
i O COMSTANT MESMONOS
& 10 g “alivels
7 P4 DONSTANT ERROS

=] 1E CONSTART NEWRLUF

9 P CONSTANT OLDELF
10 A0 CONSTANT oldtmp
11 164 CONSTaNT DLFOS 20490
1w CONSTARNT BN 4 &
g SOSE0 COMSTANT mbix
: YR IABLE tmpbud 20 CUHLET
bt SO4RG CONSTANT SURAGD 20400 0N

ZO40E CONSTANT ¢ Lmp
TS TAD

a0 Memor v PEFr MSBECL and BENF-R00 RO s ea) HEX

FroHost Lo BEMF commandes)

e acdar

COMST ek T

head
W fhh

i
P00 CORNSTAENT SO

1%

1 D5 DORSTOANT SRF O OFE CORNSTANT RO OF CORSTANT L UF O

b 114

et BESED BPME AMPSS TRW MSRL 1ooiso0 (M) sfata] S prol oy b Uk

Sloand ENFP-R0 TRD areal) HEX

;o EMFP to Host commands)

G COMSTANT < sdone FO03E CONSTANT Tendaddr
CONSTANT <sts (status from ENF)

O Flewnor sy MER P

4] e DEG COMSTANT <Yestatus
b 2007 STANT <head

4
CONSTAMT

fbh_r

COMSTANT Sdata (SENF) 2ES00 CONSTANT rdata (ENF)

CONSTAMT Tenp C400n COMSTANT enp
OO COMSTANT Tenp for RAaM testing?
O CORETART “enp for FPROM bas

00 b FEZO00 Lo adiust starbing addre:

wsweh for USH etherrnel protocol)

Do Felling ERNFP Lo Host Fackar ound task)

FEaUEGFROUND <netdata (data from nebwork)
FGROLING ¢ dusnimey chmmy baskd

O Folling EMF O to Host Background Task) HEX
1 E=T0

Dldenp <neldsta BUILD

o v BLUITLD 3

A4 NMeRIaRLE T VR TaRLE TE VARIABLE T

Soa MTHOTL @ L3z YTEOTZ @ .o

BOMARIARLE T4
R oL o3 o P14 T4 @ . g

1 f"t'; 115

STty

ek L mbi e Pl e ; vy

o Eliver ret deal o Lo AR
1 Sty G4 EROALE ol DL
S Cechoyee WD)
o Sedat s Pl G0 #® rolat
,l i 4 L\l { :

S LI O

iy £

[R1N
{ad
13
RN

In se
I 1iIn setl
ol w1+
sidata 1110 % 10+
OO0 1+ 310 s ddata +
Plos = Sodata + !
cotata OF
Ploo# o4 b
Aoard ochimsfl i fla

10

o
R

AR

[NERIE)

1o [

or

S RS

L

o
]

T ‘

I TSI rrresto Lrescyi v g
g4

LU T ek T
- AP]

R ERT al e

COMSTONT RdFa 0 resdy add?

G DOMSTAMNT RdlFg ©ox '

SN (o I

Ol

TN

ST

s Cft U]
R ST e
it

g b ey

b il

L (114 B AT S N

ol e
ooridle

breaad
e e

vy Towse

faat
!‘c! I"}:

[

TR TR R
Ty

B

» Y R LA
r oretenp 0 ot
y brescdes 1 (1o

sy

Eotboer vyt by

£y
Draddeng en

bt

ERENRS SN I N Y

BT &

"
¥

F100g b

! Teripe 4

" e

FIRIRE T by
L
St
LIF
e IR
Eyl!:‘ f F f.

GF F
OFF

ARRIRININ]

SRy

S

LB e IRIRTS Pivy

e e

ich e ist

HERDEI

ts &E
]

ST SR !

v

Liptdeib

lication:
<heand !
rericacidr !

Ao L1 10

L.OGF
L.OOF
+ data
+ Fdata

L.O0F
1310

E.3 -

o= 3 EBEAIT

DEF IRITIU
it

melbio |

oy
L4

(IR
COMSETAMNT

TARLE
B

DR

Wi HEX

s] Ey
R
gy

[

A+l

ki@

&+

D

‘Z'.l'

I

[a]

TR AR T NS

HE ®

wltail by

bt

TR,

TedT

SHd

(

Cgoerg |
el
(O

C1o0s W!

10 :
ST AT F I RO T S I o

Sl

I be_=set LOOF
I b set

LOOF

HE %
BLOEDS

T 0

AF G0 1 mend add?
o O mend)
oo baf

et ot

Fyererch s
=tb i

tarl
rery)

IRIREY
bt

1k e
{orldle

DF ol
R o
LOUF s

S U
-

C1o06 W

]

/ (] F"\l a

SWaF W

e

x

R S DI Sk PSS G IS SN VLD o £ o WA N S QL I UkagE -~ proed b LR TS S

Y HEX

communication words el

chinsg 3 L display msg to CRT)

@ ! Coclesr but @ i fidto 2
Thead @ 4 G Ok i F Thead at end of fifol
H SR ST SO oA 4 4+ i det new Thead valuwe
THEM < head ' g i update Thead value)

ine head (e

S BN) {
finby v @ 1+ o
DR it e -1 G !

& GLIFT fht e @ U 0 pt last fb to added buf
iOOVER ! owel added fbh oto last, -1)

Tl ¢ ! Loupdate fht oo opte 0

PHEM fbh v e 14 D

IF ft v & Flaby v b THER

ferst meszage generation) HEX

Shyeasd @ Chedl @ - 0= WOT U sy meg sl 2
IF dnsag { odisplay msd CRT OO
Copd soe R sadlug for or b toed D
i Fiead { oadi dhead ptr)
vt s i ot odsply msg bud to fb opool o
THE M

Sherad ® Steido@ - O= UNTILY 50 0 any more msog s Y

Lo I

forpoee 3 D DOV e LOGE 5 O display noomsg s

e comn Lest wordes Zeoo-Bé o HEX

o fer " OR CR

ARG 000 mbe T4 o o+ @ o CROLOOF

RIS Jorewbud o= 0 MGTLRBOY NEWRUE + @ . OR

LUoobdbod s U MATLEGD OLDE + @, OR

3ot COMEILEROY oldtmp + & L CR

CoERhernet adde bBioh byvte = " MATLROX sah + WE . LR

mal + @ o OR 3

ombe @ . CROj
TR

Lmpwd Y tomphbot @

chbanef L

1

El]

o pesmb L s ki s T Rb Pk b Litdégdb-)

Eran LTl

FRANSHIT message generstion)
Ly adadr FEFEOMATLBOEL NMEWRUF 4+

FEORETLEROY NEWRUF RO
FMea TLBCG NEWRUF + & 4+ W!

3w
BT
—
o
T ad.

“
m: AR

xe

4
Tooromsg 40 O Dy BHER e MR TLENTY MEMBLF 4+ @ 4+ 1"
i} [0 H

beaddr wsg METLEOY
DUE GEEOS 4 00 SWAR
METL EOY NEWRLE + @

P W T
IO T
Shddp O

| S

i

i

Lo s devr M
g

i

i

shims i 4

s

Ml PO SBEFEOS ! 5
MG TLEBOY ERROR + @, CROVY flang
e L Ul LT status U STEAD @
CF LY recrs Ve @, OF
CRoL 8 "

By

FL.C
b
LAY

Fw L BOE

" 3]

4 LUobrans

e L Tl =

rbmp B oL g

- T
-y

T

e al
T
=
—
T

‘e

st et us .
DU

O whiow 1 f
COLUNTER
RN

7 o Lalive [OR
g " RETWORE (-
G dalive @ o X0 0 DD
1)
11
i

40 D O T e
LOOF
winsg o
RIERICINTS

by 0%

(STTEN]

1A g bre achoir
i4 Ma TR
i M LRy

2

b Pl lest tools)0 0 B d9-mg)

WD S -

DD tmsg 1 MATLEOX SBEFGEOS + ‘ { SEMND MBG
4 OO s

poddp msg SO0 DAy 1 Ee U000+ WeE o LOOF g

118

DLFOS +
O SWAR C!

W b

bl

+ow e

80

RN O S P

SNFOS + O

2

Lo

